系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (10): 3037-3045.doi: 10.12305/j.issn.1001-506X.2022.10.06
李浩洋, 向建军*, 彭芳, 王帅, 李志军
收稿日期:
2021-12-17
出版日期:
2022-09-20
发布日期:
2022-10-24
通讯作者:
向建军
作者简介:
李浩洋(1997—), 男, 硕士研究生, 主要研究方向为阵列信号处理|向建军(1975—), 男, 副教授, 博士, 主要研究方向为机载预警探测技术、综合保障工程|彭芳(1973—), 女, 副教授, 博士, 主要研究方向为雷达信号处理、机载预警探测技术|王帅(1996—), 男, 硕士研究生, 主要研究方向为阵列信号处理|李志军(1997—), 男, 硕士研究生, 主要研究方向为阵列信号处理
基金资助:
Haoyang LI, Jianjun XIANG*, Fang PENG, Shuai WANG, Zhijun LI
Received:
2021-12-17
Online:
2022-09-20
Published:
2022-10-24
Contact:
Jianjun XIANG
摘要:
针对广义旁瓣相消(generalized sidelobe canceller, GSC)算法运算量大, 在波束形成中存在旁瓣较高、稳健性差的问题, 提出一种基于粒子群优化(particle swarm optimization, PSO)的波束空间GSC算法。首先, 建立一种优化自适应转换矩阵将信号处理过程由阵元空间转换到波束空间, 通过减小自由度来降低算法的运算量。其次, 构建最小均方误差适应度函数, 在波束空间中利用压缩因子PSO算法充分利用接收数据的相关性, 缩减与期望信号误差并降低波束旁瓣。所提算法在降低算法运算量的同时, 解决了波束旁瓣过高的问题, 并在低快拍、强干扰条件下具有较好波束形成能力, 算法稳健性好。
中图分类号:
李浩洋, 向建军, 彭芳, 王帅, 李志军. 基于粒子群优化的波束空间广义旁瓣相消算法[J]. 系统工程与电子技术, 2022, 44(10): 3037-3045.
Haoyang LI, Jianjun XIANG, Fang PENG, Shuai WANG, Zhijun LI. Beam space generalized sidelobe canceller algorithm based on particle swarm optimization[J]. Systems Engineering and Electronics, 2022, 44(10): 3037-3045.
1 | 唐敏, 齐栋, 刘成城, 等. 单快拍相干信号自适应波束形成方法[J]. 系统工程与电子技术, 2019, 41 (6): 1224- 1229. |
TANG M , QI D , LIU C C , et al. Adaptive beamforming algorithm for coherent signal in single snapshot case[J]. Systems Engineering and Electronics, 2019, 41 (6): 1224- 1229. | |
2 | SUN G , LIU Y H , LI H , et al. An antenna array sidelobe level reduction approach through invasive weed optimization[J]. International Journal of Antennas and Propagation, 2018, 2018, 4867851. |
3 | HEMA S , MOHAN J R . Trends in adaptive array processing[J]. International Journal of Antennas and Propagation, 2012, 2012, 361768. |
4 |
罗熹, 李宏, 姜嘉琳. 基于GSC框架降秩自适应滤波算法研究[J]. 电子设计工程, 2013, 21 (5): 61- 64.
doi: 10.3969/j.issn.1674-6236.2013.05.020 |
LUO X , LI H , JIANG J L . Research on algorithms for reduced rank adaptive filtering based on GSC framework[J]. Electronic Design Engineering, 2013, 21 (5): 61- 64.
doi: 10.3969/j.issn.1674-6236.2013.05.020 |
|
5 |
HASSANIEN A , ELKADER S A , GERSHMAN A B , et al. Convex optimization based beam-space preprocessing with improved robustness against out-of-sector sources[J]. IEEE Trans.on Signal Processing, 2006, 54 (5): 1587- 1595.
doi: 10.1109/TSP.2006.870564 |
6 | SHI W T, HUANG J G, ZHENG J M, et al. A beam-space method for direction of arrival and power estimation by exploiting the sparsity[C]//Proc. of the IEEE 11th International Conference on Signal Processing, 2012: 2165-2168. |
7 | SU Z M , ZHU S M , LV X , et al. Image restoration using structured sparse representation with a novel parametric data-adaptive transformation matrix[J]. Signal Processing Image Communication, 2017, 52 (3): 151- 172. |
8 | 范展, 梁国龙, 王晋晋, 等. 一种高效的自适应波束域变换方法及应用研究[J]. 物理学报, 2015, 64 (9): 378- 383. |
FAN Z , LIANG G L , WANG J J , et al. An efficient adaptive beam-space transformation technique and its application in array processing[J]. Acta Physica Sinica, 2015, 64 (9): 378- 383. | |
9 |
LI W T , SHI X W , HEI Y Q . An improved particle swarm optimization algorithm for pattern synthesis of phased arrays[J]. Progress in Electromagnetics Research, 2008, 82, 319- 332.
doi: 10.2528/PIER08030904 |
10 | 唐寅洲, 赵高泽. 改进粒子群优化算法自适应波束形成技术[J]. 舰船科学技术, 2018, 40 (17): 111- 115. |
TANG Y Z , ZHAO G Z . Adaptive beamforming technique based on a modified particle swarm optimization[J]. Ship Science and Technology, 2018, 40 (17): 111- 115. | |
11 | WANG Y P, ZHANG Z. Particle swarm optimization algorithm with compression factor is used to solve complex shading MPPT problem[C]//Proc. of the 5th International Conference on Mechatronics, Control and Electronic Engineering, 2020: 170-174. |
12 | 苏志刚, 陈欣然, 郝敬堂. 基于粒子群优化的圆阵列波束形成方法[J]. 系统工程与电子技术, 2020, 42 (7): 1449- 1454. |
SU Z G , CHEN X R , HAO J T . Circular array beamforming method based on particle swarm optimization[J]. Systems Engineering and Electronics, 2020, 42 (7): 1449- 1454. | |
13 |
TAKASHI S , RYU M , YOSHIO K . Beamspace adaptive array antenna for broadband signals[J]. Electronics and Communications in Japan (Part Ⅰ: Communications), 1997, 80 (10): 38- 48.
doi: 10.1002/(SICI)1520-6424(199710)80:10<38::AID-ECJA5>3.0.CO;2-M |
14 | ZHAO H W , LIAN B W , FENG J . A adaptive beamforming algorithm for interference suppression in GNSS receivers[J]. International Journal of Computer Science & Information Technology, 2011, 3 (5): 17- 28. |
15 |
VAHDANI R , BIZAKI H K , JOSHAGHANI M F . New correlated MIMO radar covariance matrix design with low side lobe levels and much lower complexity[J]. Chinese Journal of Aeronautics, 2021, 34 (1): 327- 335.
doi: 10.1016/j.cja.2020.08.034 |
16 | ZHAO D , TAN W J , DENG Z L , et al. Low complexity sparse beamspace DOA estimation via single measurement vectors for uniform circular array[J]. EURASIP Journal on Advances in Signal Processing, 2021, 54. |
17 |
ZHANG W , WANG J , WU S L , et al. Robust capon beamforming against large DOA mismatch[J]. Signal Processing, 2013, 93 (4): 804- 810.
doi: 10.1016/j.sigpro.2012.10.002 |
18 | WANG X , XIE J L , HE Z S , et al. A robust generalized sidelobe canceller via steering vector estimation[J]. EURASIP Journal on Advances in Signal Processing, 2016, 59. |
19 | SRIDEVI K, RANI A J. Particle swarm optimization versus genetic algorithm for an adaptive uniform circular array[C]//Proc. of the IEEE International Conference on Electrical, 2015. |
20 |
ZAHARIS Z D , GOTSIS K A , SAHALOS J N . Adaptive beamforming with low side lobe level using neural networks trained by mutated boolean PSO[J]. Progress in Electromagnetics Research, 2012, 127, 139- 154.
doi: 10.2528/PIER12022806 |
21 |
ZAHARIS Z D , YIOULTSIS T V . A novel adaptive beamforming technique applied on linear antenna arrays using adaptive mutated boole[J]. Progress in Electromagnetics Research, 2011, 117, 165- 179.
doi: 10.2528/PIER11041904 |
22 |
WANG W X , YAN S F , MAO L L , et al. Robust minimum variance beamforming with sidelobe level control using the alternating direction method of multipliers[J]. IEEE Trans.on Aerospace and Electronic Systems, 2021, 57 (5): 3506- 3519.
doi: 10.1109/TAES.2021.3090903 |
23 |
WANG X R , ZHAI W T , FARINA A . A unified framework of adaptive sidelobe canceller design by antenna/subarray selection[J]. Signal Processing, 2021, 189, 108243.
doi: 10.1016/j.sigpro.2021.108243 |
24 |
CHEN G , TIAN B , GONG J , et al. DOA estimation with new compensation sparse extension MIMO radar[J]. Wireless Personal Communications, 2022, 122 (1): 23- 40.
doi: 10.1007/s11277-021-08874-6 |
25 |
LIU X , LI Z H , XU P , et al. Joint optimization for bandwidth utilization and delay based on particle swarm optimization[J]. IEEE Access, 2021, 9, 92125- 92133.
doi: 10.1109/ACCESS.2021.3091693 |
26 | SU Y Y , WANG T , LIN X F . Decoupled narrowband robust adaptive beamforming based on the ADMM in a noisy channel[J]. IET Radar, Sonar & Navigation, 2020, 14 (4): 637- 642. |
27 |
KAREEM T A , HUSSAIN M A , JABBAR M K . Particle swarm optimization based beamforming in massive MIMO systems[J]. International Journal of Interactive Mobile Technologies, 2020, 14 (5): 176- 192.
doi: 10.3991/ijim.v14i05.13701 |
28 | KONISHIJ, YAHADA H, YAHAGUCHI Y. On optimum element arrangements of HIHO radar based on the Khatri-Rao product virtual array[C]//Proc. of the International Symposium on Antennas and Propagation, 2018. |
29 |
RYOO W , SUNG W . Beamforming using uniform spherical arrays: array construction, beam characteristics, and multi-rank transmission[J]. IEEE Access, 2021, 9, 38731- 38741.
doi: 10.1109/ACCESS.2021.3064605 |
30 |
LIU Z W , ZHAO S S , ZHANG G X , et al. Robust adaptive beamforming for sidelobe canceller with Null widening[J]. IEEE Sensors Journal, 2019, 19 (23): 11213- 11220.
doi: 10.1109/JSEN.2019.2936681 |
31 | WANG X X, ZHOU Y, MA Y B, et al. A robust generalized sidelobe canceller controlled by a priori SIR estimate[C]//Multimedia Systems and Signal Processing, 2018: 84-89. |
32 | CHANG D C , ZHENG B W . Adaptive generalized sidelobe canceler beamforming with time-varying direction-of-arrival estimation for arrayed sensors[J]. IEEE Sensors Journal, 2019, 20 (8): 4403- 4412. |
33 |
IBRAHIM R A , ABD E M , LU S . Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization[J]. Expert Systems with Applications, 2018, 108, 1- 27.
doi: 10.1016/j.eswa.2018.04.028 |
34 |
SHI Y M , ZHANG J , LETAIEF K B . Robust group sparse beamforming for multicast green cloud-RAN with imperfect CSI[J]. IEEE Trans.on Signal Processing, 2015, 63 (17): 4647- 4659.
doi: 10.1109/TSP.2015.2442957 |
[1] | 万福海, 许京伟, 张振荣. FDA-MIMO雷达稳健抗主瓣距离欺骗式干扰技术[J]. 系统工程与电子技术, 2022, 44(9): 2809-2816. |
[2] | 杨建峰, 肖和业, 李亮, 白俊强, 董维浩. 基于模糊聚类和专家评分机制的无人机多层次模块划分方法[J]. 系统工程与电子技术, 2022, 44(8): 2530-2539. |
[3] | 李君龙, 李松洲, 周荻. 一种多约束条件下的三脉冲交会优化设计方法[J]. 系统工程与电子技术, 2022, 44(8): 2612-2620. |
[4] | 王帅, 向建军, 彭芳, 唐书娟, 李志军. 基于新最速下降算法的自适应波束形成[J]. 系统工程与电子技术, 2022, 44(7): 2104-2111. |
[5] | 赵英健, 田波, 王春阳, 宫健, 谭铭, 周长霖. 基于FDA-MIMO雷达的主瓣SMSP干扰空时域联合抑制方法[J]. 系统工程与电子技术, 2022, 44(7): 2157-2165. |
[6] | 曹鹏宇, 杨承志, 石礼盟, 吴宏超. 基于PSO-DBSCAN和SCGAN的未知雷达信号处理方法[J]. 系统工程与电子技术, 2022, 44(4): 1158-1165. |
[7] | 杜思予, 全英汇, 沙明辉, 方文, 邢孟道. 基于进化PSO算法的稀疏捷变频雷达波形优化[J]. 系统工程与电子技术, 2022, 44(3): 834-840. |
[8] | 吴彬彬, 全英汇, 肖国尧, 李亚超, 邢孟道. 基于射频收发器的高中频DBF系统设计[J]. 系统工程与电子技术, 2022, 44(2): 365-375. |
[9] | 唐军奎, 刘峥, 谢荣, 曾波. MIMO雷达稀疏阵列优化设计方法[J]. 系统工程与电子技术, 2022, 44(12): 3661-3666. |
[10] | 刘奕彬, 王春阳, 宫健, 谭铭. 基于频控阵MIMO雷达的低复杂度稳健波束形成算法[J]. 系统工程与电子技术, 2022, 44(11): 3388-3396. |
[11] | 石宸睿, 田露, 徐湛, 职如昕, 陈晋辉. 基于PSO-BP的应急通信感知装备效能评价方法[J]. 系统工程与电子技术, 2022, 44(11): 3455-3462. |
[12] | 路复宇, 童宁宁, 冯为可, 万鹏程. 自适应杂交退火粒子群优化算法[J]. 系统工程与电子技术, 2022, 44(11): 3470-3476. |
[13] | 黄翔东, 赵一冉, 苗笛. 基于噪声子空间特性的波束形成器设计[J]. 系统工程与电子技术, 2021, 43(8): 2297-2302. |
[14] | 兰岚, 许京伟, 朱圣棋, 廖桂生, 张玉洪. 波形分集阵列雷达抗干扰进展[J]. 系统工程与电子技术, 2021, 43(6): 1437-1451. |
[15] | 时晨光, 董璟, 周建江, 汪飞. 飞行器射频隐身技术研究综述[J]. 系统工程与电子技术, 2021, 43(6): 1452-1467. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||