1 |
STEVENS M , MERILAITA S . Animal camouflage: current issues and new perspectives[J]. Philosophical Transaction of the Royal Society B: Biological Sciences, 2009, 364 (1516): 423- 427.
doi: 10.1098/rstb.2008.0217
|
2 |
ZHENG Y W , ZHANG X W , WANG F , et al. Detection of people with camouflage pattern via dense deconvolution network[J]. IEEE Signal Processing Letters, 2018, 26 (1): 29- 33.
|
3 |
LE T N , NGUYEN T V , NIE Z , et al. Anabranch network for camouflaged object segmentation[J]. Computer Vision and Image Understanding, 2019, 184, 45- 56.
doi: 10.1016/j.cviu.2019.04.006
|
4 |
FAN D P, JI G P, SUN G, et al. Camouflaged object detection[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 2777-2787.
|
5 |
LIU T , YUAN Z J , SUN J , et al. Learning to detect a salient object[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2010, 33 (2): 353- 367.
|
6 |
WANG L J, LU H C, WANG Y F, et al. Learning to detect salient objects with image-level supervision[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 136-145.
|
7 |
SHI J P , YAN Q , XU L , et al. Hierarchical image saliency detection on extended CSSD[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2015, 38 (4): 717- 729.
|
8 |
LI G B, YU Y Z. Visual saliency based on multiscale deep features[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 5455-5463.
|
9 |
MOVAHEDI V, ELDER J H. Design and perceptual validation of performance measures for salient object segmentation[C]//Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010: 49-56.
|
10 |
TROSCIANKO T , BENTON C P , LOVELL P G , et al. Camouflage and visual perception[J]. Philosophical Transaction of the Royal Society B: Biological Sciences, 2009, 364 (1516): 449- 461.
doi: 10.1098/rstb.2008.0218
|
11 |
周宇, 张慧, 冷沙. 战场上的"伪装者"——伪装技术对作战的影响[J]. 军事文摘, 2020, (7): 16- 20.
|
|
ZHOU Y , ZHANG H , LENG S . "Pretenders" on the battlefield—the influence of camouflage technology on combat[J]. Military Digest, 2020, (7): 16- 20.
|
12 |
鲜晓东, 李克文. 基于颜色和纹理特征的伪装色矿工目标检测[J]. 计算机应用, 2013, 33 (2): 539- 542.
|
|
XIAN X D , LI K W . Camouflage miner target detection based on color and texture features[J]. Computer Applications, 2013, 33 (2): 539- 542.
|
13 |
FAN D P, JI G P, ZHOU T, et al. Pranet: parallel reverse attention network for polyp segmentation[C]//Proc. of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2020: 263-273.
|
14 |
SENGOTTUVELAN P, WAHI A, SHANMUGAM A. Performance of decamouflaging through exploratory image analysis[C]//Proc. of the IEEE International Conference on Emerging Trends in Engineering and Technology, 2008: 6-10.
|
15 |
PAN Y X , CHEN Y W , FU Q , et al. Study on the camouflaged target detection method based on 3D convexity[J]. Modern Applied Science, 2011, 5 (4): 152- 157.
|
16 |
CHEN Q, WANG Y M, YANG T, et al. You only look one-level feature[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13039-13048.
|
17 |
SUN P, ZHANG W, WANG H, et al. Deep RGB-D saliency detection with depth-sensitive attention and automatic multi-modal fusion[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 1407-1417.
|
18 |
BOUDIAF M, KERVADEC H, MASUD Z I, et al. Few-shot segmentation without meta-learning: a good transductive inference is all you need?[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13979-13988.
|
19 |
LV Y Q, ZHANG J, DAI Y C, et al. Simultaneously localize, segment and rank the camouflaged objects[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 11591-11601.
|
20 |
HALL J R, CUTHILL I C, BADDELEY R, et al. Camouflage, detection and identification of moving targets[J]. Proceedings of the Royal Society B: Biological Sciences, 2013, 280(1758): 20130064.
|
21 |
金国栋, 薛远亮, 谭力宁, 等. 基于孪生神经网络的目标跟踪算法进展研究[J]. 系统工程与电子技术, 2022, 44 (6): 1805- 1822.
|
|
JIN G D , XUE Y L , TAN L N , et al. Research on the progress of target tracking algorithm based on twin neural network[J]. Systems Engineering and Electronics, 2022, 44 (6): 1805- 1822.
|
22 |
曹旭, 邹焕新, 成飞, 等. 基于RHTC网络的飞机目标检测与精细识别[J]. 系统工程与电子技术, 2021, 43 (12): 3439- 3451.
doi: 10.12305/j.issn.1001-506X.2021.12.04
|
|
CAO X , ZOU H X , CHENG F , et al. Aircraft target detection and fine recognition based on RHTC network[J]. Systems Engineering and Electronics, 2021, 43 (12): 3439- 3451.
doi: 10.12305/j.issn.1001-506X.2021.12.04
|
23 |
LIU Y D, WANG Y T, WANG S W, et al. Cbnet: a novel composite backbone network architecture for object detection[C]//Proc. of the AAAI Conference on Artificial Intelligence, 2020: 11653-11660.
|
24 |
DING X H, ZHANG X Y, HAN J G, et al. Diverse branch block: building a convolution as an inception-like unit[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 10886-10895.
|
25 |
LEE Y W, PARK J. Centermask: real-time anchor-free instance segmentation[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 13906-13915.
|
26 |
WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7794-7803.
|
27 |
DE BOER P T , KROESE D P , MANNOR S , et al. A tutorial on the cross-entropy method[J]. Annals of Operations Research, 2005, 134 (1): 19- 67.
doi: 10.1007/s10479-005-5724-z
|
28 |
QIN X B, ZHANG Z C, HUANG C Y, et al. Basnet: boundary-aware salient object detection[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 7479-7489.
|
29 |
WANG Z, SIMONCELLI E P, BOVIK A C. Multi-scale structural similarity for image quality assessment[C]//Proc. of the IEEE 37th Asilomar Conference on Signals, Systems & Computers, 2003: 1398-1402.
|
30 |
FAN D P, GONG C, CAO Y, et al. Enhanced-alignment measure for binary foreground map evaluation[C]//Proc. of the 27th International Joint Conference on Artificial Intelligence, 2018: 698-703.
|
31 |
FAN D P, CHENG M M, LIU Y, et al. Structure-measure: a new way to evaluate foreground maps[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 4548-4557.
|
32 |
MARGOLIN R, ZELNIK-MANOR L, TAL A. How to evaluate foreground maps?[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 248-255.
|
33 |
PERAZZI F, KRÄHENBVHL P, PRITCH Y, et al. Saliency filters: contrast based filtering for salient region detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2012: 733-740.
|
34 |
ZHAO J X, LIU J J, FAN D P, et al. EGNet: edge guidance network for salient object detection[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2019: 8779-8788.
|
35 |
WANG B, CHEN Q, ZHOU M, et al. Progressive feature polishing network for salient object detection[C]//Proc. of the AAAI Conference on Artificial Intelligence, 2020: 12128-12135.
|
36 |
QIN X B , ZHANG Z C , HUANG C Y , et al. U2-net: going deeper with nested ustructure for salient object detection[J]. Pattern Recognition, 2020, 106, 107404.
doi: 10.1016/j.patcog.2020.107404
|
37 |
PANG Y W, ZHAO X Q, ZHANG L H, et al. Multi-scale interactive network for salient object detection[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 9413-9422.
|
38 |
WEI J, WANG S H, HUANG Q M. F3Net: fusion, feedback and focus for salient object detection[C]//Proc. of the AAAI Conference on Artificial Intelligence, 2020: 12321-12328.
|