系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (9): 2963-2970.doi: 10.12305/j.issn.1001-506X.2022.09.32
张刚, 雷家洪*, 张天骐
收稿日期:
2021-08-04
出版日期:
2022-09-01
发布日期:
2022-09-09
通讯作者:
雷家洪
作者简介:
张刚(1976—), 男, 教授, 博士, 主要研究方向为混沌同步、混沌保密通信|雷家洪(1996—), 男, 硕士研究生, 主要研究方向为混沌保密通信|张天骐(1971—), 男, 教授, 博士后, 主要研究方向为扩频信号的盲处理、神经网络实现以及信号的同步处理
基金资助:
Gang ZHANG, Jiahong LEI*, Tianqi ZHANG
Received:
2021-08-04
Online:
2022-09-01
Published:
2022-09-09
Contact:
Jiahong LEI
摘要:
针对置换相关键控(permutation correlated shift keying, PCSK)存在信号间干扰且误码率(bit error rate, BER)较高的问题, 对其进行改进并提出了新型正交降噪相关延迟移位键控(quadrature noise reduction correlation delay shift keying, QNR-CDSK)通信系统。通过设计一种新的正交混沌信号发生器, 产生两路严格正交的混沌信号, 将这两路信号分别作为参考信号和信息承载信号并复制P次后叠加传输, 从而消除信号间干扰。随后使用滑动平均滤波器对接收信号进行滤波处理, 降低系统BER。最后在加性高斯白噪声信道和瑞利衰落信道下推导了系统的BER, 并进行蒙特卡罗仿真验证其性能。结果表明, 与PCSK系统相比, 该系统具有更好的BER性能, 为混沌通信的实际应用提供了参考价值。
中图分类号:
张刚, 雷家洪, 张天骐. 新型正交降噪CDSK通信系统[J]. 系统工程与电子技术, 2022, 44(9): 2963-2970.
Gang ZHANG, Jiahong LEI, Tianqi ZHANG. Novel quadrature denoising CDSK communication system[J]. Systems Engineering and Electronics, 2022, 44(9): 2963-2970.
1 | KADDOUM G , TRAN H V , KONG L , et al. Design of simultaneous wireless information and power transfer scheme for short reference DCSK communication systems[J]. IEEE Trans.on Communications, 2016, 65 (1): 431- 443. |
2 |
KADDOUM G , SOUJERI E , ARCILA C , et al. I-DCSK: an improved noncoherent communication system architecture[J]. IEEE Trans.on Circuits and Systems Ⅱ: Express Briefs, 2015, 62 (9): 901- 905.
doi: 10.1109/TCSII.2015.2435831 |
3 |
LIU L D , LI Y , ZHANG Z L , et al. High-efficiency and noise-robust DCSK approach based on an analytically solvable chaotic oscillator[J]. Electronics Letters, 2018, 54 (24): 1384- 1385.
doi: 10.1049/el.2018.6054 |
4 | ZHANG G C , ZHAO C C , ZHANG T Q . Performance analysis of MISO-MU-OHE-DCSK system over Rayleigh fading channels[J]. AEU-International Journal of Electronics and Communications, 2020, 115, 153048. |
5 |
MIAO M Y , WANG L , CHEN G R , et al. Design and analysis of replica piecewise M-ary DCSK scheme for power line communications with asynchronous impulsive noise[J]. IEEE Trans.on Circuits and Systems Ⅰ: Regular Papers, 2020, 67 (12): 5443- 5453.
doi: 10.1109/TCSI.2020.3023749 |
6 |
PECORA L M , CARROLL T L . Synchronization in chaotic system[J]. Physical Review Letters, 1990, 64 (8): 821.
doi: 10.1103/PhysRevLett.64.821 |
7 | XU W K , HUANG T T , WANG L . Code-shifted differential chaos shift keying with code index modulation for high data rate transmission[J]. IEEE Trans.on Communications, 2017, 65 (10): 4285- 4294. |
8 | CHENG G X , WANG L , XU W K , et al. Carrier index differential chaos shift keying modulation[J]. IEEE Trans.on Circuits and Systems Ⅱ: Express Briefs, 2016, 64 (8): 907- 911. |
9 | KOLUMBAN C , KENNEDY M P , CHUA L O . The role of synchronization in digital communications using chaos-part Ⅱ: chaotic modulation[J]. IEEE Trans.on Circuits & Systems Part Ⅰ: Fundamental Theory & Applications, 1998, 45 (11): 1129- 1129. |
10 |
KOLUMBÁN G , KENNEDY M P , JÁKÓ Z , et al. Chaotic communications with correlator receivers: theory and performance limits[J]. Proceedings of the IEEE, 2002, 90 (5): 711- 732.
doi: 10.1109/JPROC.2002.1015003 |
11 | RUSHFORTH C K . Transmitted-reference techniques for random or unknown channels[J]. IEEE Trans.on Information Theory, 1964, 9 (1): 39- 42. |
12 |
SUSHCHIK M , TSIMRING L S , VOLKOVSKⅡ A R . Performance analysis of correlation-based communication schemes utilizing chaos[J]. IEEE Trans.on Circuits and Systems Ⅰ: Fundamental Theory and Applications, 2000, 47 (12): 1684- 1691.
doi: 10.1109/81.899920 |
13 |
张刚, 许嘉平, 张天骐. 无码间干扰DC-CDSK混沌通信方案[J]. 电讯技术, 2018, 58 (4): 418- 423.
doi: 10.3969/j.issn.1001-893x.2018.04.010 |
ZHANG G , XU J P , ZHANG T Q . Inter-code-interference-free DC-CDSK chaotic communication scheme[J]. Telecommunications Technology, 2018, 58 (4): 418- 423.
doi: 10.3969/j.issn.1001-893x.2018.04.010 |
|
14 |
YANG H , JIANG G P . Reference-modulated DCSK: a novel chaotic communication scheme[J]. IEEE Trans.on Circuits and Systems Ⅱ: Express Briefs, 2013, 60 (4): 232- 236.
doi: 10.1109/TCSII.2013.2251949 |
15 |
KADDOUM G , SOUJERI E , NIJSURE Y . Design of a short reference non-coherent chaos-based communication systems[J]. IEEE Trans.on Communications, 2016, 64 (2): 680- 689.
doi: 10.1109/TCOMM.2015.2514089 |
16 | XU W K, WANG L. Performance optimization for short refe-rence differential chaos shift keying scheme[C]//Proc. of the IEEE International Conference on Signal Processing, Communications and Computing, 2017. |
17 |
HU W , WANG L , KADDOUM G . Design and performance analysis of differentially spatial modulated chaos shift keying modulation system[J]. IEEE Trans.on Circuits and Systems Ⅱ: Express Briefs, 2017, 64 (11): 1302- 1306.
doi: 10.1109/TCSII.2017.2697456 |
18 | 张刚, 郝怡曼, 张天骐. 短参倍速差分混沌键控系统[J]. 系统工程与电子技术, 2018, 40 (1): 184- 190. |
ZHANG G , HAO Y M , ZHANG T Q . Short-reference multiplier differential chaotic keying system[J]. Systems Engineering and Electronics Technology, 2018, 40 (1): 184- 190. | |
19 | 贺利芳, 陈俊, 张天骐. 短参考多用户差分混沌移位键控通信系统性能分析[J]. 电子与信息学报, 2020, 42 (8): 1902- 1909. |
HE L F , CHEN J , ZHANG T Q . Performance analysis of short-reference multi-user differential chaotic shift-keying communication system[J]. Journal of Electronics and Information, 2020, 42 (8): 1902- 1909. | |
20 | 张刚, 刘金惠, 张天骐. 一种基于正交调制的新型降噪差分混沌键控系统[J]. 电子与信息学报, 2021, 43 (2): 445- 453. |
ZHANG G , LIU J H , ZHANG T Q . A novel noise-reducing differential chaotic keying system based on orthogonal modulation[J]. Journal of Electronics and Information, 2021, 43 (2): 445- 453. | |
21 |
陈越, 陈果. 一种新型置换相关键控混沌通信系统[J]. 电讯技术, 2021, 61 (12): 1490- 1495.
doi: 10.3969/j.issn.1001-893x.2021.12.004 |
CHEN Y , CHEN G . A novel replacement-correlation keyed chaotic communication system[J]. Telecommunication Engineering, 2021, 61 (12): 1490- 1495.
doi: 10.3969/j.issn.1001-893x.2021.12.004 |
|
22 | QUAN R X . Bit-error-rate evaluation of high-efficiency diffe-rential-chaos-shift-keying system over wireless channels[J]. Journal of Circuits Systems & Computers, 2017, 27 (1): 85008. |
23 |
WANG X J , PENG M S . Chaos synchronization of discrete fractional logistic maps[J]. Dynamical Systems and Control, 2019, 8 (2): 114- 117.
doi: 10.12677/DSC.2019.82013 |
24 |
LU Y Z , MIAO M Y , WANG L , et al. A multilevel code-shifted differential chaos shift keying system with reference diversity[J]. IEEE Trans.on Circuits and Systems Ⅱ: Express Briefs, 2020, 67 (11): 2462- 2466.
doi: 10.1109/TCSII.2020.2964883 |
25 | CAI X M , XU W K , HONG S H , et al. A trinal-code shifted differential chaos shift keying system[J]. IEEE Communications Letters, 2020, 25 (3): 1000- 1004. |
26 | DAWA M , KADDOUM G , HERCEG M . A framework for the lower bound on the BER of DCSK systems over multi-path Nakagami-m fading channels[J]. IEEE Trans.on Circuits and Systems Ⅱ: Express Briefs, 2019, 67 (10): 1859- 1863. |
27 |
FAN T T , XU W K , WANG L , et al. A new APSK-based M-ary differential chaos shift keying modulation system[J]. IEEE Communications Letters, 2020, 24 (12): 2701- 2704.
doi: 10.1109/LCOMM.2020.3019105 |
28 | LIU Z F , ZHANG L , WU Z Q , et al. A secure and robust frequency and time diversity aided OFDM-DCSK modulation system not requiring channel state information[J]. IEEE Trans.on Communications, 2019, 68 (3): 1684- 1697. |
29 |
CAI G F , SONG Y . Closed-form BER expressions of M-ary DCSK systems over multipath Rayleigh fading channels[J]. IEEE Communications Letters, 2020, 24 (6): 1192- 1196.
doi: 10.1109/LCOMM.2020.2981060 |
30 | YANG H , XU S Y , JIANG G P . A high data rate solution for differential chaos shift keying based on carrier index modulation[J]. IEEE Trans.on Circuits and Systems Ⅱ: Express Briefs, 2020, 68 (4): 1487- 1491. |
31 | CHEN Z W , ZHANG L , WU Z Q , et al. Reliable and efficient sparse code spreading aided MC-DCSK transceiver design for multiuser transmissions[J]. IEEE Trans.on Communications, 2020, 69 (3): 1480- 1495. |
[1] | 张刚, 许可蓉, 张天骐. 改进型正交多用户降噪差分混沌键控通信系统[J]. 系统工程与电子技术, 2022, 44(4): 1372-1381. |
[2] | 邵凯, 朱苗苗, 王光宇. 基于生成对抗与卷积神经网络的调制识别方法[J]. 系统工程与电子技术, 2022, 44(3): 1036-1043. |
[3] | 贺利芳, 吴雪霜, 张鹏, 陈俊. 改进型正交多载波降噪差分混沌键控通信系统[J]. 系统工程与电子技术, 2021, 43(10): 3008-3016. |
[4] | 陈晓婷, 王年, 丁大为, 张公泉, 卢宇. MIMO模型下的多元混合调制DCSK方案[J]. 系统工程与电子技术, 2021, 43(7): 1989-1994. |
[5] | 亢伟民, 杨鸿文. 基于星座成形的高谱效编码调制方案[J]. 系统工程与电子技术, 2021, 43(6): 1686-1691. |
[6] | 张刚, 和华杰, 张鹏. 降噪改进型多载波CDSK混沌通信系统[J]. 系统工程与电子技术, 2021, 43(5): 1389-1397. |
[7] | 张刚, 刘金惠, 张鹏. 多用户正交多级差分混沌键控通信系统[J]. 系统工程与电子技术, 2021, 43(1): 244-250. |
[8] | 张公泉, 李晓辉, 陈晓婷, 邢昊天. 短参多进制保密差分混沌键控系统[J]. 系统工程与电子技术, 2020, 42(12): 2899-2905. |
[9] | 张刚, 和华杰, 张天骐. 无信号内干扰的降噪多用户CDSK混沌通信系统[J]. 系统工程与电子技术, 2020, 42(9): 2098-2106. |
[10] | 刘凯, 张斌, 黄青华. 基于TCNN-BiLSTM网络的调制识别算法[J]. 系统工程与电子技术, 2020, 42(8): 1841-1849. |
[11] | 庄陵, 戴蕾, 刘胜珠, 王光宇. 多模索引调制OFDM频谱及能量效率优化方案[J]. 系统工程与电子技术, 2020, 42(3): 719-726. |
[12] | 刘凯, 赵梦伟, 黄青华. 基于近似熵的Multi-h CPM调制识别算法[J]. 系统工程与电子技术, 2020, 42(3): 698-703. |
[13] | 李晨, 杨俊安, 刘辉. 基于信息熵和GA-ELM的调制识别算法[J]. 系统工程与电子技术, 2020, 42(1): 223-229. |
[14] | 王红星, 赵志勇, 王洪利, 刘锡国. 基于无抖动编码的非正弦波调制[J]. Journal of Systems Engineering and Electronics, 2009, 31(3): 531-533. |
[15] | 肖海林, 欧阳缮, 聂在平, 陈紫强. 基于叠加训练序列的MIMO信道估计及其性能分析[J]. Journal of Systems Engineering and Electronics, 2009, 31(01): 18-20,82. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||