1 |
GHAVIMI F , CHEN H . M2M communications in 3GPP LTE/LTE-a networks: architectures, service requirements, challenges, and applications[J]. IEEE Communications Surveys & Tutorials, 2015, 17 (2): 525- 549.
|
2 |
DAWY Z , SAAD W , GHOSH A , et al. Toward massive machine type cellular communications[J]. IEEE Wireless Communications, 2017, 24 (1): 120- 128.
doi: 10.1109/MWC.2016.1500284WC
|
3 |
DAI L L , WANG B C , YUAN Y F , et al. Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends[J]. IEEE Communications Magazine, 2015, 53 (9): 74- 81.
doi: 10.1109/MCOM.2015.7263349
|
4 |
胡欣鹏. 大规模机器类通信中基于分层架构的无线资源管理研究[D]. 南京: 南京邮电大学, 2020.
|
|
HU X P. Research on resource management based on two-level hierarchical in massive machine-type communications[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020.
|
5 |
FAN B, XIN S, JIE Z, et al. Method of CS-IC detection in the grant-free NOMA system[C]//Proc. of the IEEE 12th International Symposium on Medical Information and Communication Technology, 2018: 1-5.
|
6 |
WANG S , YU H X , YUAN Y F , et al. AI-enhanced constellation design for NOMA system: a model driven method[J]. China Communications, 2020, 17 (11): 100- 110.
doi: 10.23919/JCC.2020.11.009
|
7 |
ABBAS R , SHIRVANIMOGHADDAM M , LI Y H , et al. A novel analytical framework for massive grant-free NOMA[J]. IEEE Trans.on Communications, 2019, 67 (3): 2436- 2449.
doi: 10.1109/TCOMM.2018.2881120
|
8 |
JABBARVAZIRI F , BALASUBRAMANYA N M , LAMPE L . HARQ-based grant-free NOMA for mMTC uplink[J]. IEEE Internet of Things Journal, 2020, 8 (10): 8372- 8386.
|
9 |
LIN C , CHANG Q , LI X X . Uplink NOMA signal transmission with convolutional neural networks approach[J]. Journal of Systems Engineering and Electronics, 2020, 31 (5): 890- 898.
doi: 10.23919/JSEE.2020.000068
|
10 |
POSPISHNY I, VASYUK V, ROMANCHYK S, et al. 3GPP long term evolution (LTE)[C]//Proc. of the 10th International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science, 2010.
|
11 |
CANDES E J , WAKIN M B . An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25 (2): 21- 30.
doi: 10.1109/MSP.2007.914731
|
12 |
DONOHO D. L. . Compressed sensing[J]. IEEE Trans.on Information Theory, 2006, 52 (4): 1289- 1306.
doi: 10.1109/TIT.2006.871582
|
13 |
LI S , XIAO L X , JIANG T . An efficient matching pursuit based compressive sensing detector for uplink grant-free NOMA[J]. IEEE Trans.on Vehicular Technology, 2021, 70 (2): 2012- 2017.
doi: 10.1109/TVT.2021.3056462
|
14 |
JEONG B K , SHIM B , LEE K B . MAP-based active user and data detection for massive machine-type communications[J]. IEEE Trans.on Vehicular Technology, 2018, 67 (9): 8481- 8494.
doi: 10.1109/TVT.2018.2849621
|
15 |
CHOI J . Stability and throughput of random access with CS-based mud for MTC[J]. IEEE Trans.on Vehicular Technology, 2018, 67 (3): 2607- 2616.
doi: 10.1109/TVT.2017.2770171
|
16 |
YU N Y . Multiuser activity and data detection via sparsity-blind greedy recovery for uplink grant-free NOMA[J]. IEEE Communication Letters, 2019, 23 (11): 2082- 2085.
doi: 10.1109/LCOMM.2019.2937117
|
17 |
KE M L , GAO Z , WU Y P , et al. Compressive sensing-based adaptive active user detection and channel estimation: massive access meets massive MIMO[J]. IEEE Trans.on Signal Processing, 2020, 68 (1): 764- 779.
|
18 |
DAI W , MILENKOVIC O . Subspace pursuit for compressive sensing signal reconstruction[J]. IEEE Trans.on Information Theory, 2009, 55 (5): 2230- 2249.
doi: 10.1109/TIT.2009.2016006
|
19 |
ABEBE A T , KANG C G . Iterative order recursive least square estimation for exploiting frame-wise sparsity in compressive sensing-based MTC[J]. IEEE Communication Letters, 2016, 20 (5): 1018- 1021.
doi: 10.1109/LCOMM.2016.2539255
|
20 |
WANG B C, MIR T, JIAO R C, et al. Dynamic multi-user detection based on structured compressive sensing for IoT-oriented 5G systems[C]//Proc. of the IEEE Union Radio-Scientifque Internationale Asia-Pacific Radio Science Conference, 2016: 431-434.
|
21 |
SHIM B , SONG B . Multiuser detection via compressive sensing[J]. IEEE Communication Letters, 2012, 16 (7): 972- 974.
doi: 10.1109/LCOMM.2012.050112.111980
|
22 |
DU Y , CHENG C , DONG B H , et al. Block-sparsity-based multiuser detection for uplink grant-free NOMA[J]. IEEE Trans.on Wireless Communications, 2018, 17 (12): 7894- 7909.
doi: 10.1109/TWC.2018.2872594
|
23 |
WANG B C , DAI L L , ZHANG Y , et al. Dynamic compressive sensing-based multi-user detection for uplink grant-free NOMA[J]. IEEE Communication Letters, 2016, 20 (11): 2320- 2323.
doi: 10.1109/LCOMM.2016.2602264
|
24 |
DU Y , DONG B H , CHEN Z , et al. Efficient multi-user detection for uplink grant-free NOMA: prior-information aided adaptive compressive sensing perspective[J]. IEEE Journal on Selected Areas in Communications, 2017, 35 (12): 2812- 2828.
doi: 10.1109/JSAC.2017.2726279
|
25 |
王茜竹, 方冬, 吴广富. 基于改进稀疏度自适应匹配算法的免授权非正交多址接入上行传输多用户检测[J]. 电子与信息学报, 2020, 42 (9): 2216- 2222.
|
|
WANG Q Z , FANG D , WU G F . Multi-user detection based on sparsity adaptive matching pursuit compressive sensing for uplink grant-free non-orthogonal multiple access[J]. Journal of Electronics and Information Technology, 2020, 42 (9): 2216- 2222.
|
26 |
申敏, 卢晓强, 雷震宇. 一种改进的动态自适应多用户检测算法[J]. 光通信研究, 2020, (6): 49- 53.
|
|
SHEN M , LU X Q , LEI Z Y . An improved dynamic adaptive multi-user detection algorithm[J]. Study on Optical Communications, 2020, (6): 49- 53.
|
27 |
申滨, 吴和彪, 崔太平, 等. 基于最优索引广义正交匹配追踪的非正交多址系统多用户检测[J]. 电子与信息学报, 2020, 42 (3): 621- 628.
|
|
SHEN B , WU H B , CUI T P , et al. An optimal number of indices aided GOMP algorithm for multi-user detection in NOMA system[J]. Journal of Electronics and Information Technology, 2020, 42 (3): 621- 628.
|
28 |
WANG J , KWON S , SHIM S . Generalized orthogonal matching pursuit[J]. IEEE Trans.on Signal Processing, 2012, 60 (12): 6202- 6216.
doi: 10.1109/TSP.2012.2218810
|
29 |
BLUMENSATH T , DAVIES M E . Stage wise weak gradient pursuits[J]. IEEE Trans.on Signal Processing, 2009, 57 (11): 4333- 4346.
doi: 10.1109/TSP.2009.2025088
|
30 |
JIANG F , ZHENG G , HU Y , et al. Low-complexity multi-user detection based on gradient information for uplink grant-free NOMA[J]. IEEE Access, 2020, 8, 137438- 137448.
doi: 10.1109/ACCESS.2020.3012007
|