1 |
ESCOBAL P R . Methods of orbit determination[M]. Malabar: Krieger, 1976.
|
2 |
VALLADO D A . Fundamentals of astrodynamics and applications[M]. 4th ed Hawthorne: Microcosm Press, 2013.
|
3 |
GOODING R H. A new procedure for orbit determination based on three lines of sight (angles only), TR 93004[R]. Farnborough: Defence Research Agency Farnborough, 1993.
|
4 |
GOODING R H . A new procedure for the solution of the classical problem of minimal orbit determination from three lines of sight[J]. Celestial Mechanics and Dynamical Astronomy, 1996, 66 (4): 387- 423.
|
5 |
VALLADO D A. Evaluating gooding angles-only orbit determination of space based space surveillance measurements, USR 10-S4.5[R]. Colorado: Center for Space Standards and Innovation, 2010.
|
6 |
KARIMI R R , MORTARI D . Initial orbit determination using multiple observations[J]. Celestial Mechanics & Dynamical Astronomy, 2011, 109 (2): 167- 180.
|
7 |
章品, 桑吉章, 潘腾, 等. 应用距离搜索的低轨空间碎片初始轨道确定方法[J]. 航天器工程, 2017, 26 (2): 22- 28.
doi: 10.3969/j.issn.1673-8748.2017.02.004
|
|
ZHANG P , SANG J Z , PAN T , et al. Initial orbit determination method based on rang searching for LEO space debris[J]. Spacecraft Engineering, 2017, 26 (2): 22- 28.
doi: 10.3969/j.issn.1673-8748.2017.02.004
|
8 |
雷祥旭, 桑吉章, 李振伟. LEO空间目标地基甚短弧角度数据初轨确定[J]. 测绘地理信息, 2019, 44 (2): 71- 73.
|
|
LEI X X , SANG J Z , LI Z W . Initial orbit determination with very-short-arc observations of LEO object obtained from ground-based optical telescopes[J]. Journal of Geomatics, 2019, 44 (2): 71- 73.
|
9 |
WISHNEK S , HOLZINGER M J , HANDLEY P , et al. Robust initial orbit determination using streaks and admissible regions[J]. Journal of the Astronautical Sciences, 2021, 68, 349- 390.
doi: 10.1007/s40295-021-00264-1
|
10 |
GRONCHI G F , BAU G , MILANI A . Keplerian integrals, elimination theory and identification of very short arcs in a large database of optical observations[J]. Celestial Mechanics and Dynamical Astronomy, 2017, 127 (2): 211- 232.
doi: 10.1007/s10569-016-9725-9
|
11 |
GRONCHI G F , BAÙ G , RODRÍGUEZ Ó , et al. Generalization of a method by Mossotti for initial orbit determination[J]. Celestial Mechanics and Dynamical Astronomy, 2021, 133 (9): 1- 21.
|
12 |
ANSALONE L , CURTI F . A genetic algorithm for initial orbit determination from a too short arc optical observation[J]. Advances in Space Research, 2013, 52 (3): 477- 489.
doi: 10.1016/j.asr.2013.04.004
|
13 |
李鑫冉, 赵海斌. 近地小行星极短弧定轨的进化算法研究[J]. 力学学报, 2021, 53 (3): 902- 911.
|
|
LI X R , ZHAO H B . Study on evolutionary algorithms for initial orbit determination of near-earth asteroids with too-short-arc[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53 (3): 902- 911.
|
14 |
李鑫冉, 王歆. 基于遗传算法的极短弧定轨[J]. 天文学报, 2016, 57 (1): 66- 77.
|
|
LI X R , WANG X . Genetic algorithm for initial orbit determination with too short arc[J]. Acta Astronomica Sinica, 2016, 57 (1): 66- 77.
|
15 |
李鑫冉, 王歆. 基于遗传算法的极短弧定轨(续)[J]. 天文学报, 2016, 57 (2): 181- 187.
|
|
LI X R , WANG X . Genetic algorithm for initial orbit determination with too short arc (continued)[J]. Acta Astronomica Sinica, 2016, 57 (2): 181- 187.
|
16 |
LI X R , WANG X , XIONG Y Q . A combination method using evolutionary algorithms in initial orbit determination for too short arc[J]. Advances in Space Research, 2019, 63 (2): 999- 1006.
doi: 10.1016/j.asr.2018.08.036
|
17 |
HU J , LI B Z , LI J . Initial orbit determination utilizing solution group optimization[J]. IEEE Trans.on Aerospace and Electronic Systems, 2020, 55 (2): 897- 911.
|
18 |
HANDLEY P M, HAGERTY S P. Initial orbit determination using simplex fusion[C]//Proc. of the IEEE Aerospace Confe-rence, 2020.
|
19 |
CHARLIER C V L . Second note on multiple solutions in the determinationof orbits from three observation[J]. Monthly Notices of the Royal Astronomical Society, 1911, 71, 454- 459.
doi: 10.1093/mnras/71.5.454
|
20 |
CHARLIER C V L . On multiple solutions in the determination of orbits from three observations[J]. Monthly Notices of the Royal Astronomical Society, 1910, 71, 120- 124.
doi: 10.1093/mnras/71.2.120
|
21 |
DANBY J M A . Fundamentals of celestial mechanics, the macmillan company[M]. New York: Macmillan Collection, 1962.
|
22 |
GRONCHI G F . Multiple solutions in preliminary orbit determination from three observations[J]. Celestial Mechanics & Dynamical Astronomy, 2009, 103 (4): 301- 326.
|
23 |
DER G. New angles-only algorithms for initial orbit determination[C]//Proc. of the Advanced Maui Optical and Space Surveillance Technologies Conference, 2012: 412-427.
|
24 |
WIE B , AHN J . On selecting the correct root of angles-only initial orbit determination equations of Lagrange, Laplace, and Gauss[J]. The Journal of the Astronautical Sciences, 2017, 64, 50- 71.
doi: 10.1007/s40295-016-0097-x
|
25 |
PRUSSING J E , CONWAY B A . Orbital mechanics[M]. New York: Oxford University Press, 1993.
|
26 |
甘庆波, 马静远, 陆本魁, 等. 一种基于星间方向观测的初轨计算方法[J]. 宇航学报, 2008, 28 (3): 619- 622.
|
|
GAN Q B , MA J Y , LU B K , et al. An initial orbit determination method using inter satellite angle measurement[J]. Journal of Astronautics, 2008, 28 (3): 619- 622.
|
27 |
KUZNETSOV V B . Revisiting the determination of a preliminary orbit for a celestial body[J]. Solar System Research, 2019, 53 (6): 462- 472.
doi: 10.1134/S0038094619060054
|
28 |
SHEFER V A . New method of orbit determination from two position vectors based on solving Gauss's equations[J]. Solar System Research, 2010, 44 (3): 252- 266.
doi: 10.1134/S003809461003007X
|
29 |
KARIMI R R, MORTARI D. On Laplace's orbit determination method: some modifications[C]//Proc. of the AAS/AIAA Space Flight Mechanics Meeting, 2011.
|
30 |
BINI D A . Numerical computation of polynomial zeros by means of Aberth's method[J]. Numerical Algorithms, 1996, 13 (2): 179- 200.
doi: 10.1007/BF02207694
|