1 |
杨荣军. 旋转制导炮弹飞行弹道及控制系统设计方法研究[D]. 南京: 南京理工大学, 2012.
|
|
YANG R J. Study on flying trajectory and control system design for rolling guided projectle[D]. Nanjing: Nanjing University of Science & Techenology, 2012.
|
2 |
熊少锋, 魏明英, 赵明元, 等. 逆轨拦截机动目标的三维最优制导律[J]. 宇航学报, 2020, 41 (1): 80- 90.
|
|
XIONG S F , WEI M Y , ZHAO M Y , et al. Three dimensional optimal guidance law against maneuvering target for head-on engagement[J]. Journal of Astronautics, 2020, 41 (1): 80- 90.
|
3 |
WANG Y L , TANG S J , SHANG W , et al. Adaptive fuzzy sliding mode guidance law considering available acceleration and autopilot dynamics[J]. International Journal of Aerospace Engineering, 2018,
doi: 10.1155/2018/6081801
|
4 |
WANG X , QIU X . Study on fuzzy neural sliding mode guidance law with terminal angle constraint for maneuvering target[J]. Mathematical Problems in Engineering, 2020,
doi: 10.1155/2020/4597937
|
5 |
ZHANG W J , FU S N , LI W , et al. An impact angle constraint integral sliding mode guidance law for maneuvering targets interception[J]. Journal of Systems Engineering and Electronics, 2020, 31 (1): 168- 184.
|
6 |
李庆春, 张文生, 韩刚. 终端约束条件下末端制导律研究综述[J]. 控制理论与应用, 2016, 33 (1): 1- 12.
|
|
LI Q C , ZHANG W S , HAN G . Review of terminal guidance law with terminal constraints[J]. Control Theory & Applications, 2016, 33 (1): 1- 12.
|
7 |
BRIERLEY S , LONGCHAMP R . Application of sliding-mode control to air-air interception problem[J]. IEEE Trans.on Aerospace and Electronic Systems, 1990, 26 (2): 306- 325.
doi: 10.1109/7.53460
|
8 |
MOON J K , KIM K , KIM Y . Design of missile guidance law via variable structure control[J]. Journal of Guidance, Control, and Dynamics, 2001, 24 (4): 659- 664.
doi: 10.2514/2.4792
|
9 |
SONG J H , DONG S M , GUO Y , et al. Nonlinear disturbance observer-based fast terminal sliding mode guidance law with impact angle constraints[J]. International Journal of Innovative Computing, Information & Control, 2015, 11 (3): 787- 802.
|
10 |
JI H B , LIU X D , SONG Z Y , et al. Time-varying sliding mode guidance scheme for maneuvering target interception with impact angle constraint[J]. Journal of the Franklin Institute, 2018, 355 (18): 9192- 9208.
doi: 10.1016/j.jfranklin.2017.01.036
|
11 |
WEI Y Y, LIU W K, DUAN G R. Missile guidance law with impact angle constraint and acceleration saturation[C]//Proc. of the 35th Chinese Control Conference, 2016: 281-286.
|
12 |
ZHOU D , QU P P , SUN S . A guidance law with terminal impact angle constraint accounting for missile autopilot[J]. Journal of Dynamic Systems, Measurement, and Control, 2013, 135 (5): 051009.
doi: 10.1115/1.4024202
|
13 |
ZHAO Z H , LI C T , YANG J , et al. Output feedback continuous terminal sliding mode guidance law for missile-target interception with autopilot dynamics[J]. Aerospace Science and Technology, 2019, 86, 256- 267.
doi: 10.1016/j.ast.2019.01.012
|
14 |
WANG X X , LU H Q , HUANG X L , et al. Three-dimensional time-varying sliding mode guidance law against maneuvering targets with terminal angle constraint[J]. Chinese Journal of Aeronautics, 2022, 35 (4): 303- 319.
doi: 10.1016/j.cja.2021.05.019
|
15 |
RUSNAK I , WEISS H , HEXNER G . Optimal guidance laws with prescribed degree of stability[J]. Aerospace Science and Technology, 2020, 99, 105780.
doi: 10.1016/j.ast.2020.105780
|
16 |
HE S M , LEE C H , SHIN H S , et al. Optimal guidance and its applications in missiles and UAVs[M]. Switzerland: Springer Nature, 2020.
|
17 |
HE S M , LEE C H . Optimal proportional-integral guidance with reduced sensitivity to target maneuvers[J]. IEEE Trans.on Aerospace and Electronic Systems, 2018, 54 (5): 2568- 2579.
doi: 10.1109/TAES.2018.2824678
|
18 |
KIM B , KIM Y W , CHO N , et al. Collision-geometry-based optimal guidance for high-speed target[J]. Aerospace Science and Technology, 2021, 115, 106766.
doi: 10.1016/j.ast.2021.106766
|
19 |
KIM Y W , KIM B , LEE C H , et al. A unified formulation of optimal guidance-to-collision law for accelerating and decelerating targets[J]. Chinese Journal of Aeronautics, 2022, 35 (7): 40- 54.
doi: 10.1016/j.cja.2021.11.019
|
20 |
RYOO C K , CHO H , TAHK M J . Time-to-go weighted optimal guidance with impact angle constraints[J]. IEEE Trans.on Control Systems Technology, 2006, 14 (3): 483- 492.
doi: 10.1109/TCST.2006.872525
|
21 |
SHAFERMAN V , SHIMA T . Linear quadratic guidance laws for imposing a terminal intercept angle[J]. Journal of Guidance, Control, and Dynamics, 2008, 31 (5): 1400- 1412.
doi: 10.2514/1.32836
|
22 |
熊少锋, 魏明英, 赵明元, 等. 考虑导弹速度时变的角度约束最优中制导律[J]. 控制理论与应用, 2018, 35 (2): 248- 257.
|
|
XIONG S F , WEI M Y , ZHAO M Y , et al. Impact angle constrained optimal midcourseguidance law for missiles of time-varying speed[J]. Control Theory & Applications, 2018, 35 (2): 248- 257.
|
23 |
孟克子, 周荻. 多约束条件下的最优中制导律设计[J]. 系统工程与电子技术, 2016, 38 (1): 116- 122.
|
|
MENG K Z , ZHOU D . Design of optimal midcourse guidance law with multiple constraints[J]. Systems Engineering and Electronics, 2016, 38 (1): 116- 122.
|
24 |
CHEN X T , WANG J Z . Optimal control based guidance law to control both impact time and impact angle[J]. Aerospace Science and Technology, 2019, 84, 454- 463.
doi: 10.1016/j.ast.2018.10.036
|
25 |
CHI H S , LEE Y I , LEE C H , et al. A practical optimal gui-dance scheme under impact angle and terminal acceleration constraints[J]. International Journal of Aeronautical and Space Sciences, 2021, 22, 923- 935.
doi: 10.1007/s42405-020-00339-7
|
26 |
ZHOU D, MU C D, LING Q, et al. Optimal sliding-mode guidance of a homing-missile[C]//Proc. of the IEEE Confe-rence on Decision and Control, 1999: 5131-5136.
|
27 |
LI Y S, ZHAO X, SHE S H, et al. SDRE optimal sliding mode guidance law design with attack angle constraint[C]//Proc. of the IEEE Chinese Control Conference, 2019: 3815-3820.
|
28 |
胡正东, 郭才发, 蔡洪. 带落角约束的再入机动弹头的复合导引律[J]. 国防科技大学学报, 2008, 30 (2): 21- 26.
|
|
HU Z D , GUO C F , CAI H . Integrated guidance law of reentry maneuvering warhead with terminal angular constraint[J]. Journal of National University of Defense Technology, 2008, 30 (2): 21- 26.
|
29 |
HUANG R S, LI W. Optimal sliding mode guidance law with height deviation and terminal impact angle constraints[C]//Proc. of the IEEE Aerospace Conference, 2015.
|
30 |
李文武, 王京, 张勇军. 具有自适应滑模项的最优滑模制导律设计[J]. 计算机仿真, 2014, 31 (5): 51- 55.
|
|
LI W W , WANG J , ZHANG Y J . Design of optimal sliding-mode guidance law with adaptive sliding mode item[J]. Computer Simulation, 2014, 31 (5): 51- 55.
|