1 |
OLIVEIRA I L , FILETO R , SPECK R , et al. Towards holistic entity linking: survey and directions[J]. Information Systems, 2021, 95, 101624.
doi: 10.1016/j.is.2020.101624
|
2 |
MYTHREI S , SINGARAVELAN S . Survey on entity linking for domain specific with heterogeneous information networks[J]. Informatologia, 2020, 53 (3/4): 173- 184.
|
3 |
马忠贵, 倪润宇, 余开航. 知识图谱的最新进展、关键技术和挑战[J]. 工程科学学报, 2020, 42 (10): 1254- 1266.
|
|
MA Z G , NI R Y , YU K H . Recent advances, key technologies and challenges in knowledge graph[J]. Journal of Engineering Science, 2020, 42 (10): 1254- 1266.
|
4 |
官赛萍, 靳小龙, 贾岩涛, 等. 面向知识图谱的知识推理研究进展[J]. 软件学报, 2018, 29 (10): 2966- 2994.
|
|
GUAN S P , JIN X L , JIA Y T , et al. Knowledge inference based on knowledge graph[J]. Journal of Software, 2018, 29 (10): 2966- 2994.
|
5 |
张仲伟, 曹雷, 陈希亮, 等. 基于神经网络的知识推理研究综述[J]. 计算机工程与应用, 2019, 55 (12): 8- 19.8-19, 36
|
|
ZHANG Z W , CAO L , CHEN X L , et al. A review of knowledge reasoning based on neural network[J]. Computer Engineering and Applications, 2019, 55 (12): 8- 19.8-19, 36
|
6 |
漆桂林, 高桓, 吴天星. 知识图谱研究进展[J]. 情报工程, 2017, 3 (1): 4- 25.
|
|
QI G L , GAO H , WU T X . Progress in knowledge graph[J]. Information Engineering, 2017, 3 (1): 4- 25.
|
7 |
刘峤, 李杨, 段宏, 等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53 (3): 582- 600.
|
|
LIU Q , LI Y , DUAN H , et al. A review of knowledge graph construction techniques[J]. Journal of Computer Research and Development, 2016, 53 (3): 582- 600.
|
8 |
张钹, 朱军, 苏航. 迈向第三代人工智能[J]. 中国科学: 信息科学, 2020, 50 (9): 1281- 1302.
|
|
ZHANG B , ZHU J , SU H . Towards the third generation of artificial intelligence[J]. Science China: Information Science, 2020, 50 (9): 1281- 1302.
|
9 |
LI D , FU Z J , ZHENG Z Y . An entity linking model based on candidate features[J]. Social Network Analysis and Mining, 2021, 11 (1): 50.
doi: 10.1007/s13278-021-00761-z
|
10 |
WANG Y T, LI Z X, YANG Q, et al. WebEL: improving entity linking with extra web contexts[C]//Proc. of the Web Information Systems Engineering, 2019: 507-522.
|
11 |
XIE T , BIN W U , JIA B , et al. Graph-ranking collective Chinese entity linking algorithm[J]. Frontiers of Computer Science, 2020, 14 (2): 291- 303.
doi: 10.1007/s11704-018-7175-0
|
12 |
FENG H J, DUAN L, ZHANG B Y, et al. A collective entity linking method based on graph embedding algorithm[C]//Proc. of the 5th International Conference on Mechanical, Control and Computer Engineering, 2020: 1479-1482.
|
13 |
FINN V K , SHESTERNIKOVA O . A new variant of the genera-lized JSM-method for automatic support of scientific research[J]. Scientific and Technical Information Processing, 2017, 44 (5): 338- 344.
doi: 10.3103/S0147688217050045
|
14 |
PINGLE A, PIPLAI A, MITTAL S, et al. RelExt: relation extraction using deep learning approaches for cybersecurity knowledge graph improvement[C]//Proc. of the IEEE/ACM International Conference on Advances in Social Networks Ana-lysis and Mining, 2020: 879-886.
|
15 |
DASGUPTA S, PIPLAI A, KOTAL A, et al. A comparative study of deep learning based named entity recognition algorithms for cybersecurity[C]//Proc. of the IEEE International Conference on Big Data, 2020: 2596-2604.
|
16 |
LIU X, ATHANASIOU C E, PADTURE N P, et al. Knowledge extraction and transfer in data-driven fracture mechanics[J]. Proceedings of the National Academy of Sciences, 2021, 118(23): e2104765118.
|
17 |
WU L F, CHEN Y, SHEN K, et al. Graph neural networks for natural language processing: a survey[EB/OL]. [2021-06-13]. https://arxiv.org/abs/2106.06090.
|
18 |
YUAN H, YU H Y, GUI S R, et al. Explainability in graph neural networks: a taxonomic survey[EB/OL]. [2021-06-13]. https://arxiv.org/abs/2012.15445.
|
19 |
SUN Y N , XU Y J , LI S . Knowledge-aware path: interpretable graph reasoning in proactive dialogue generation[J]. The Journal of China Universities of Posts and Telecommunications, 2021, 28 (1): 1- 9.
|
20 |
HOSPEDALES T . Meta-learning in neural networks: a survey[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2021, 44 (9): 5149- 5169.
|
21 |
MONDAL A. A survey of reinforcement learning techniques: strategies, recent development, and future directions[EB/OL]. [2021-06-13]. https://arxiv.org/abs/2001.06921.
|
22 |
HUISMAN M , RIJN J , PLAAT A . A survey of deep meta-learning[J]. Artificial Intelligence Review, 2021, 54, 4483- 4541.
doi: 10.1007/s10462-021-10004-4
|
23 |
GHOSH S , BEQUETTE B W . Process systems engineering and the human-in-the-loop: the smart control room[J]. Industrial and Engineering Chemistry Research, 2020, 59 (6): 2422- 2429.
doi: 10.1021/acs.iecr.9b04739
|
24 |
刘全, 翟建伟, 章宗长, 等. 深度强化学习综述[J]. 计算机学报, 2018, 41 (1): 1- 27.
|
|
LIU Q , ZHAI J W , ZHANG Z C , et al. A review of deep reinforcement learning[J]. Chinese Journal of Computers, 2018, 41 (1): 1- 27.
|
25 |
MAZYAVKINA N , SVIRIDOV S , IVANOV S , et al. Reinforcement learning for combinatorial optimization: a survey[J]. Computers & Operations Research, 2021, 134 (1): 105400.
|
26 |
GRONAUER S , DIEPOLD K . Multi-agent deep reinforcement learning: a survey[J]. Artificial Intelligence Review, 2022, 55 (2): 895- 943.
|
27 |
李晨溪, 曹雷, 张永亮, 等. 基于知识的深度强化学习研究综述[J]. 系统工程与电子技术, 2017, 39 (11): 2603- 2613.
|
|
LI C X , CAO L , ZHANG Y L , et al. A review of knowledge-based deep reinforcement learning[J]. Systems Engineering and Electronics, 2017, 39 (11): 2603- 2613.
|
28 |
丁兆云, 贾焰. 微博数据挖掘研究综述[J]. 计算机研究与发展, 2014, 51 (4): 691- 706.
|
|
DING Z Y , JIA Y . A review of microblog data mining[J]. Journal of Computer Research and Development, 2014, 51 (4): 691- 706.
|
29 |
BIZER C , LEHMANN J , KOBILAROV G , et al. DBpedia-a crystallization point for the web of data[J]. Web Semantics Science Services and Agents on the World Wide Web, 2009, 7 (3): 154- 165.
|
30 |
LIU Y, LI H, GARCIA-DURAN A, et al. MMKG: multi-modal knowledge graphs[C]//Proc. of the European Semantic Web Conference, 2019: 459-474.
|
31 |
WANG M , WANG H F , QI G L , et al. Richpedia: a large-scale, comprehensive multi-modal knowledge graph[J]. Big Data Research, 2020, 22 (10): 100159.
|