系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (9): 2849-2857.doi: 10.12305/j.issn.1001-506X.2022.09.19

• 系统工程 • 上一篇    下一篇

面向多无人机协同对地攻击的双层任务规划方法

余婧1, 雍恩米1, 陈汉洋1, 郝东2,*, 张显才1   

  1. 1. 中国空气动力研究与发展中心计算空气动力研究所, 四川 绵阳 621000
    2. 中国空气动力研究与发展中心空天技术研究所, 四川 绵阳 621000
  • 收稿日期:2021-08-11 出版日期:2022-09-01 发布日期:2022-09-09
  • 通讯作者: 郝东
  • 作者简介:余婧(1986—), 女, 副研究员, 博士, 主要研究方向为飞行器设计、飞行器任务和轨迹规划|雍恩米(1979—), 女, 副研究员, 博士, 主要研究方向为多机协同任务规划、导弹攻防任务规划|陈汉洋(1996—), 男, 研究实习员, 主要研究方向为图论、任务规划、动态规划相关算法|郝东(1986—), 男, 工程师, 博士, 主要研究方向为飞行器设计|张显才(1992—), 男, 助理研究员, 硕士, 主要研究方向为无人机航迹规划
  • 基金资助:
    基础和前沿技术研究基金(PJD20180148)

Bi-level mission planning method for multi-cooperative UAV air-to-ground attack

Jing YU1, Enmi YONG1, Hanyang CHEN1, Dong HAO2,*, Xiancai ZHANG1   

  1. 1. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China
    2. Aerospace Technology Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China
  • Received:2021-08-11 Online:2022-09-01 Published:2022-09-09
  • Contact: Dong HAO

摘要:

无人机(unmanned aerial vehicles, UAVs)的任务规划包含任务分配、执行顺序确定以及航迹优化等。为了达到任务规划的全局最优,需要全盘梳理任务的各个方面,提出高效的优化策略。综合考虑任务规划过程中任务分配、执行顺序确定以及航迹优化等方面的需求和相互间影响,首先从优化框架出发, 设计了双层互耦的任务规划求解策略, 而后将任务规划模型分为上层任务分配和下层任务序列优化, 并对每一层的优化方法和优化步骤进行了详细设计。在任务分配问题中, 基于模拟退火算法, 提出了可跳出局部最优的模拟退火-撒点(simulated-annealing-shooting, SAS)算法, 并详细探讨了算法参数的设计原则。最后通过仿真分析, 验证了所提出的规划框架和SAS优化算法的有效性。

关键词: 无人机, 任务规划, 模拟退火算法, 规划框架, 优化算法

Abstract:

The unmanned aerial vehicles (UAVs) mission planning consists of task allocation, mission sequence assignment and trajectory planning. These optimization problems are interacted. To achieve the global optimal solution of the UAVs mission planning, these three optimization problems should be fully considered and organized. In this paper, considering the requirements and interactions among the three optimization problems, a double-level planning framework is firstly introduced, and then the whole mission planning problem is decomposed into two parts: the high level task allocation and the low level sequence optimization. The optimization models and methods for each level are subsequently developed and detailed. In the process of task allocation, a simulated-annealing-shooting (SAS) is proposed for overcoming the local-optimal-trap, and the configuration principle of the algorithm parameters are discussed. Finally, the simulation results demonstrate the effectiveness of the proposed planning framework and the SAS algorithm.

Key words: unmanned aerial vehicle (UAV), mission planning, simulated-annealing algorithm, planning framework, optimization algorithm

中图分类号: