系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (9): 2800-2808.doi: 10.12305/j.issn.1001-506X.2022.09.13
刘晓楠, 王昆, 孙晗伟*, 鲁耀兵
收稿日期:
2021-12-13
出版日期:
2022-09-01
发布日期:
2022-09-09
通讯作者:
孙晗伟
作者简介:
刘晓楠(1995—), 女, 博士研究生, 主要研究方向为雷达系统总体设计|王昆(1990—), 男, 工程师, 硕士, 主要研究方向为雷达系统总体设计|孙晗伟(1985—), 男, 研究员, 博士后, 主要研究方向为雷达系统总体设计|鲁耀兵(1965—), 男, 研究员, 博士, 主要研究方向为雷达系统总体设计
Xiaonan LIU, Kun WANG, Hanwei SUN*, Yaobing LU
Received:
2021-12-13
Online:
2022-09-01
Published:
2022-09-09
Contact:
Hanwei SUN
摘要:
雷达高度计是一种重要的海洋微波遥感器, 利用雷达高度计观测海面动力高度是进行全球尺度海洋监测的有效手段。近年来, 雷达高度计逐渐从实孔径模式向合成孔径模式发展, 从Ku频段向Ka频段发展, 观测的精度和分辨率得到了较大提升。首先研究了Ka频段合成孔径雷达高度计的全链路数据处理方法, 包括回波预处理、改进的回波模型、回波重跟踪, 然后基于国内首次Ka频段海面机载试验数据进行参数反演, 并采用平均海面高模型数据进行验证。数据处理结果证明了数据处理方法的正确性。
中图分类号:
刘晓楠, 王昆, 孙晗伟, 鲁耀兵. Ka频段合成孔径雷达高度计机载数据处理[J]. 系统工程与电子技术, 2022, 44(9): 2800-2808.
Xiaonan LIU, Kun WANG, Hanwei SUN, Yaobing LU. Ka-band SAR altimeter airborne data processing[J]. Systems Engineering and Electronics, 2022, 44(9): 2800-2808.
1 | 赵启钊, 孙光才, 李航, 等. 海洋遥感雷达的一体化发展趋势[J]. 遥测遥控, 2021, 42 (3): 55- 63. |
ZHAO Q Z , SUN G C , LI H , et al. The development of integrated marine remote sensing radar[J]. Journal of Telemetry, Tracking and Command, 2021, 42 (3): 55- 63. | |
2 | GARCIA E S , SANDWELL D T , SMITH W H F . Retracking CryoSat-2, Envisat and Jason-1 radar altimetry waveforms for improved gravity field recovery[J]. Geophysical Journal International, 2013, 196 (3): 1402- 1422. |
3 | PHALIPPOU L, ENJOLRAS V. Re-tracking of SAR altimeter ocean power-waveforms and related accuracies of the retrieved sea surface height, significant wave height and wind speed[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2007: 3533-3536. |
4 | HALIMI A, MAILHES C, TOURNERET J. Cramer-Rao bounds and estimation algorithms for delay/Doppler and conventional altimetry[C]//Proc. of the 21st European Signal Processing Conference, 2013: 1-5. |
5 | TOURNADRE J, CHAPRONO B. Altimeter as an imager of the sea surface roughness: comparison of SAR and LRM modes[C]// Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2020: 3541-3544. |
6 |
EGIDO A , SMITH W H F . Fully focused SAR altimetry: theory and applications[J]. IEEE Trans.on Geoscience and Remote Sensing, 2017, 55 (1): 392- 406.
doi: 10.1109/TGRS.2016.2607122 |
7 |
RAY C , PUIG C M , CLARIZIA M P , et al. SAR altimeter backscattered waveform model[J]. IEEE Trans.on Geoscience and Remote Sensing, 2015, 53 (2): 911- 919.
doi: 10.1109/TGRS.2014.2330423 |
8 |
BOY F , DESJONQUèRES J , PICOT N , et al. CryoSat-2 SAR-mode over oceans: processing methods, global assessment, and benefits[J]. IEEE Trans.on Geoscience and Remote Sensing, 2017, 55 (1): 148- 158.
doi: 10.1109/TGRS.2016.2601958 |
9 | DINARDO S, LUCAS B, BENVENISTE J. Sentinel-3 STM SAR ocean retracking algorithm and SAMOSA model[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2015: 5320-5323. |
10 |
EGIDO A , SMITH W H F . Pulse-to-pulse correlation effects in high PRF low-resolution mode altimeters[J]. IEEE Trans.on Geoscience and Remote Sensing, 2019, 57 (5): 2610- 2617.
doi: 10.1109/TGRS.2018.2875622 |
11 | LUDWIG M, DAGANZO-EUSEBIO E, DAVIDSON M. Ka-band radar missions for earth observation[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2013: 2289-2292. |
12 | RICHARD J, PHALIPPOU L, ROBERt F, et al. An advanced concept of radar altimetry over oceans with improved performances and ocean sampling: AltiKa[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2007: 3537-3540. |
13 |
KUMAR U M , SASAMAL S K , SWAIN D , et al. Intercomparison of geophysical parameters from SARAL/AltiKa and Jason-2 altimeters[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8 (10): 4863- 4870.
doi: 10.1109/JSTARS.2015.2469757 |
14 | VAZE P, KAKI S, LIMONADI D, et al. The surface water and ocean topography mission[C]//Proc. of the IEEE Aerospace Conference, 2018: 1-9. |
15 | BAI Y N, WANG Y H, ZHANG Y M, et al. The effects of random error on the measurement results of wide-swath interferometric imaging radar altimeter[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2019: 8308-8311. |
16 | 陈嘉明. 新型雷达高度计波形数据处理方法及湖泊应用研究[D]. 北京: 中国科学院大学(中国科学院空天信息创新研究院), 2021. |
CHEN J M. Waveform processing techniques and applications for new satellite radar altimetry over lake level[D]. Beijing: University of Chinese Academy of Sciences (Aerospace Information Research Institute of Chinese Academy of Sciences), 2021. | |
17 | WINGHAM D J , PHALIPPOU L , MAVROCORDATOS C , et al. The mean echo and echo cross product from a beamforming interferometric altimeter and their application to elevation measurement[J]. IEEE Trans.on Geoscience and Remote Sensing, 2004, 42 (10): 2305- 2323. |
18 | 王磊. 高精度卫星雷达高度计数据处理技术研究[D]. 北京: 中国科学院研究生院(空间科学与应用研究中心), 2015. |
WANG L. Study on data processing for high precision satellite radar altimeter[D]. Beijing: University of Chinese Academy of Sciences (Center for Space Science and Applied Research), 2015. | |
19 | WINGHAM D J , GILES K A , GALIN N , et al. A semianalytical model of the synthetic aperture, interferometric radar altimeter mean echo, and echo cross-product and its statistical fluctuations[J]. IEEE Trans.on Geoscience and Remote Sensing, 2018, 56 (5): 2539- 2553. |
20 |
GUCCIONE P . Beam sharpening of delay/Doppler altimeter data through chirp Zeta transform[J]. IEEE Trans.on Geoscience and Remote Sensing, 2008, 46 (9): 2517- 2526.
doi: 10.1109/TGRS.2008.918863 |
21 | SCAGLIOLA M , GUCCIONE P . Datation and range calibration of radar altimeter exploiting fully focused SAR processing[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18 (3): 480- 483. |
22 | BROWN G . The average impulse response of a rough surface and its applications[J]. IEEE Trans.on Antennas and Propagation, 1977, 25 (1): 67- 74. |
23 | 米银霞. 卫星雷达高度计的海洋参数反演与近海重跟踪算法研究[D]. 武汉: 华中科技大学, 2019. |
MI Y X. The study on ocean parameter inversion and offshore retracking algorithm based on satellite radar altimeter[D]. Wuhan: Huazhong University of Science & Technology, 2019. | |
24 | PIRES N , FERNANDES M J , GOMMENGINGER C , et al. Improved sea state bias estimation for altimeter reference missions with altimeter-only three-parameter models[J]. IEEE Trans.on Geoscience and Remote Sensing, 2019, 57 (3): 1448- 1462. |
25 | RECCHIA L , SCAGLIOLA M , GIUDICI D , et al. An accurate semianalytical waveform model for mispointed SAR interferometric altimeters[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (9): 1537- 1541. |
26 | HALIMI A , MAILHES C , TOURNERET J , et al. Including antenna mispointing in a semi-analytical model for delay/Doppler altimetry[J]. IEEE Trans.on Geoscience and Remote Sensing, 2015, 53 (2): 598- 608. |
27 | RECCHIA L, SCAGLIOLA M, GIUDICI D. Doppler ambiguities masking for altimeter waveforms: a model based approach[C]// Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2018: 7613-7616. |
28 | SCAGLIOLA M, GUCCIONE P, GIUDICI D. Fully focused SAR processing for radar altimeter: a frequency domain approach[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2018: 6699-6702. |
29 | TOURAIN C , PIRAS F , OLLIVIER A , et al. Benefits of the adaptive algorithm for retracking altimeter nadir echoes: results from simulations and CFOSAT/SWIM observations[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 9 (12): 9927- 9940. |
30 | HALIMI A , MAILHES C , TOURNERET J , et al. A semi-analytical model for delay/Doppler altimetry and its estimation algorithm[J]. IEEE Trans.on Geoscience and Remote Sensing, 2014, 52 (7): 4248- 4258. |
31 | GUO J Y, DI W Q, YUAN J J, et al. Satellite radar altimetric waveform simulation and retracking over coastal sea based on singular spectrum analysis[C]//Proc. of the 5th International Workshop on Earth Observation and Remote Sensing Applications, 2018: 1-5. |
32 | 许安迪, 陈学恩. 基于卫星高度计数据的全球海洋潮汐特征分析[J]. 中国海洋大学学报(自然科学版), 2021, 51 (1): 1- 8. |
XU A D , CHEN X E . Analysis of global tidal characteristics using satellite altimetry data[J]. Periodical of Ocean University of China, 2021, 51 (1): 1- 8. |
[1] | 苗添, 曾虹程, 王贺, 陈杰. 基于迭代阈值分割的星载SAR洪水区域快速提取[J]. 系统工程与电子技术, 2022, 44(9): 2760-2768. |
[2] | 王彩云, 吴钇达, 王佳宁, 马璐, 赵焕玥. 基于改进的CNN和数据增强的SAR目标识别[J]. 系统工程与电子技术, 2022, 44(8): 2483-2487. |
[3] | 傅东宁, 廖桂生, 黄岩, 张邦杰, 王幸. 基于图拉普拉斯嵌入的合成孔径雷达时变窄带干扰抑制算法[J]. 系统工程与电子技术, 2022, 44(6): 1846-1853. |
[4] | 盖明慧, 张苏, 孙卫天, 倪育德, 杨磊. 复数兼容全变分SAR目标结构特征增强[J]. 系统工程与电子技术, 2022, 44(6): 1862-1872. |
[5] | 徐安林, 张毓, 周峰. 基于Beta过程的高分辨ISAR成像[J]. 系统工程与电子技术, 2022, 44(6): 1873-1879. |
[6] | 纪朋徽, 代大海, 邢世其, 冯德军. 密集虚假运动目标生成方法[J]. 系统工程与电子技术, 2022, 44(5): 1502-1511. |
[7] | 刘丰恺, 黄大荣, 郭新荣, 冯存前. 基于吕氏分布的机动目标参数化平动补偿方法[J]. 系统工程与电子技术, 2022, 44(4): 1166-1173. |
[8] | 陈冬, 句彦伟. 基于语义分割实现的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2022, 44(4): 1195-1201. |
[9] | 周晓玲, 张朝霞, 鲁雅, 王倩, 王琨琨. 基于改进R-FCN的SAR图像识别[J]. 系统工程与电子技术, 2022, 44(4): 1202-1209. |
[10] | 杨磊, 张苏, 盖明慧, 方澄. 高分辨SAR目标成像方向性结构特征增强[J]. 系统工程与电子技术, 2022, 44(3): 808-818. |
[11] | 王俊杰, 冯德军, 胡卫东. 基于时变材料的合成孔径雷达图像二维调制方法[J]. 系统工程与电子技术, 2022, 44(2): 455-462. |
[12] | 方澄, 李慧娟, 路稳, 宋玉蒙, 杨磊. 基于形态学自适应分块的高分辨SAR多特征增强算法[J]. 系统工程与电子技术, 2022, 44(2): 470-479. |
[13] | 雷禹, 冷祥光, 周晓艳, 孙忠镇, 计科峰. 基于改进ResNet网络的复数SAR图像舰船目标识别方法[J]. 系统工程与电子技术, 2022, 44(12): 3652-3660. |
[14] | 贾晓雅, 汪洪桥, 杨亚聃, 崔忠马, 熊斌. 基于YOLO框架的无锚框SAR图像舰船目标检测[J]. 系统工程与电子技术, 2022, 44(12): 3703-3709. |
[15] | 徐正, 巩光众, 罗运华, 李广德. 约束优化的空间变迹算法的旁瓣抑制应用[J]. 系统工程与电子技术, 2022, 44(11): 3298-3304. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||