系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (9): 2760-2768.doi: 10.12305/j.issn.1001-506X.2022.09.08
苗添, 曾虹程*, 王贺, 陈杰
收稿日期:
2020-10-16
出版日期:
2022-09-01
发布日期:
2022-09-01
通讯作者:
曾虹程
作者简介:
苗添(1997—), 男, 硕士研究生, 主要研究方向为SAR图像处理|曾虹程(1989—), 男, 讲师, 博士, 主要研究方向为SAR成像处理、误差分析与补偿以及新体制雷达设计|王贺(1998—), 男, 硕士研究生, 主要研究方向为SAR成像处理|陈杰(1973—), 男, 教授, 博士, 主要研究方向为星载合成孔径雷达系统建模、高分辨率星载SAR成像处理、新体制成像雷达系统技术
Tian MIAO, Hongcheng ZENG*, He WANG, Jie CHEN
Received:
2020-10-16
Online:
2022-09-01
Published:
2022-09-01
Contact:
Hongcheng ZENG
摘要:
基于星载合成孔径雷达(synthetic aperture radar, SAR)的洪水区域提取可对洪灾信息进行高效提取。然而, 传统提取方法往往时间复杂度较高, 严重影响了洪灾区域获取的时效性。基于改进迭代阈值分割原理, 本文提出了一种星载SAR图像洪水区域快速提取方法。首先, 对预处理后的SAR图像进行高斯拟合再抽样, 抑制SAR图像直方图异常点的影响。其次, 利用迭代阈值算法进行水体提取, 并基于形态学滤波对噪声进行抑制。最后, 对已识别的水体区域开展变化检测, 实现洪灾区域的提取。基于2020年7月鄱阳湖流域特大洪灾前后的哨兵-1 SAR图像, 本文开展了洪水区域提取对比试验。试验结果表明, 该方法可在保证洪水区域提取精度的同时, 显著提升处理效率。
中图分类号:
苗添, 曾虹程, 王贺, 陈杰. 基于迭代阈值分割的星载SAR洪水区域快速提取[J]. 系统工程与电子技术, 2022, 44(9): 2760-2768.
Tian MIAO, Hongcheng ZENG, He WANG, Jie CHEN. A fast extraction method of flood areas based on iterative threshold segmentation using spaceborne SAR data[J]. Systems Engineering and Electronics, 2022, 44(9): 2760-2768.
表2
高斯拟合函数参数"
名称 | 指标 | 序号 | |||||
1 | 2 | 3 | 4 | 5 | 6 | ||
数据1拟合函数参数 | ak | 5.851×104 | 0 | -1 470 | 3.215×105 | 7.663×104 | 1.187×105 |
bk | 170.8 | 174.7 | 151.2 | 167.8 | 164 | 63.86 | |
ck | 12.14 | 0.048 12 | 5.611 | 20.52 | 48.07 | 24.46 | |
数据2拟合函数参数 | ak | 5.465×105 | -2.266×105 | -5.991×104 | 1.478×105 | 8.147×104 | - |
bk | 155.3 | 160.8 | 110.4 | 133.1 | 49.81 | - | |
ck | 18.1 | 15.13 | 28.9 | 52.75 | 17.08 | - | |
数据3拟合函数参数 | ak | 2.698×105 | -1.69×104 | 3.999×104 | -9.646×104 | 1.527×105 | 1.525×105 |
bk | 168.3 | 25.84 | 189.0 | 115.8 | 156.8 | 82.12 | |
ck | 18.28 | 12.82 | 10.84 | 41.37 | 43.06 | 39.89 |
1 | CUMMING I G , WONG F H . Digital signal processing of synthetic aperture radar data: algorithms and implementation[M]. Boston: Artech House, 2004. |
2 |
MOREIRA A , PRATS-IRAOLA P , YOUNIS M , et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1 (1): 6- 43.
doi: 10.1109/MGRS.2013.2248301 |
3 |
龚林松, 李士进. 基于改进的SLIC和OTSU的遥感影像水体提取[J]. 计算机技术与发展, 2019, 29 (1): 145- 149.
doi: 10.3969/j.issn.1673-629X.2019.01.030 |
GONG L S , LI S J . Water information extraction from remote sensing imagery based on improved SLIC and OTSU[J]. Computer Technology and Development, 2019, 29 (1): 145- 149.
doi: 10.3969/j.issn.1673-629X.2019.01.030 |
|
4 | NIHARIKA E, ADEEBA H, KRISHNA A S R, et al. K-means based noisy SAR image segmentation using median filtering and otsu method[C]//Proc. of the IEEE International Conference on IoT and Application, 2017. |
5 |
AO W , XU F , LI Y C , et al. Detection and discrimination of ship targets in complex background from spaceborne ALOS-2 SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11 (2): 536- 550.
doi: 10.1109/JSTARS.2017.2787573 |
6 | 李致衡, 陈亮, 张博程, 等. 基于最大熵阈值分割的SAR图像溢油检测[J]. 信号处理, 2019, 35 (6): 1111- 1117. |
LI Z H , CHEN L , ZHANG B C , et al. SAR image oil spill detection based on maximum entropy threshold segmentation[J]. Journal of Signal Processing, 2019, 35 (6): 1111- 1117. | |
7 |
KERSTEN P R , LEE J S , AINSWORTH T L . Unsupervised classification of polarimetric synthetic aperture radar images using fuzzy clustering and EM clustering[J]. IEEE Trans.on Geoscience and Remote Sensing, 2005, 43 (3): 519- 527.
doi: 10.1109/TGRS.2004.842108 |
8 | KHAN K U , YANG J , ZHANG W J . Unsupervised classification of polarimetric SAR images by EM algorithm[J]. IEICE Trans.on Communications, 2007, 90 (12): 3632- 3642. |
9 | FENG W Q , SUI H G , HUANG W M , et al. Water body extraction from very high-resolution remote sensing imagery using deep U-Net and a superpixel-based conditional random field model[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 16 (4): 618- 622. |
10 |
AN Q Z , PAN Z X , YOU H J . Ship detection in Gaofen-3 SAR images based on sea clutter distribution analysis and deep convolutional neural network[J]. Sensors, 2018, 18 (2): 334- 336.
doi: 10.3390/s18020334 |
11 | OTSU N . A threshold selection method from gray-level histograms[J]. IEEE Trans.on Systems, Man & Cybernetics, 2007, 9 (1): 62- 66. |
12 | 孙亚勇, 黄诗峰, 李纪人, 等. Sentinel-1A SAR数据在缅甸伊洛瓦底江下游区洪水监测中的应用[J]. 遥感技术与应用, 2017, 32 (2): 282- 288. |
SUN Y Y , HUANG S F , LI J R , et al. The downstream flood monitoring application of Myanmar Irrawaddy River based on Sentinel-1A SAR[J]. Remote Sensing Technology and Application, 2017, 32 (2): 282- 288. | |
13 | 郭欣, 赵银娣. 基于Sentinel-1A SAR的湖南省宁乡市洪水监测[J]. 遥感技术与应用, 2018, 33 (4): 646- 656. |
GUO X , ZHAO Y D . Flood inundation monitoring in ningxiang of Hunan province based on Sentinel-1A SAR[J]. Remote Sensing Technology and Application, 2018, 33 (4): 646- 656. | |
14 | HARTIGAN J , WONG M . Algorithm AS 136: a K-means clustering algorithm[J]. Journal of the Royal Statistical Society, 1979, 28 (1): 100- 108. |
15 | 戴牧宸, 冷祥光, 熊博莅, 等. 基于改进双边网络的SAR图像海陆分割方法[J]. 雷达学报, 2020, 9 (5): 886- 897. |
DAI M C , LENG X G , XIONG B L , et al. Sea-land segmentation method for SAR images based on improved BiSeNet[J]. Journal of Radars, 2020, 9 (5): 886- 897. | |
16 |
SHAMSOLMOALI P , ZAREAPOOR M , WANG R , et al. A novel deep structure U-Net for sea-land segmentation in remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12 (9): 3219- 3232.
doi: 10.1109/JSTARS.2019.2925841 |
17 | 王志豪, 李刚, 蒋骁. 基于光学和SAR遥感图像融合的洪灾区域检测方法[J]. 雷达学报, 2020, 9 (3): 539- 553. |
WANG Z H , LI G , JIANG X . Flooded area detection method based on fusion of optical and SAR remote sensing images[J]. Journal of Radars, 2020, 9 (3): 539- 553. | |
18 | PRAKASH R , SINGH D , PATHAK N P . A fusion approach to retrieve soil moisture with SAR and optical data[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2012, 5 (1): 196- 206. |
19 |
SICA F , REALE D , POGGI G , et al. Nonlocal adaptive multilooking in SAR multipass differential interferometry[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8 (4): 1727- 1742.
doi: 10.1109/JSTARS.2015.2421554 |
20 | 张过, 蒋永华, 李立涛, 等. 高分辨率光学/SAR卫星几何辐射定标研究进展[J]. 测绘学报, 2019, 48 (12): 1604- 1623. |
ZHANG G , JIANG Y H , LI L T , et al. Research progress of high-resolution optical/SAR satellite geometric radiometric calibration[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48 (12): 1604- 1623. | |
21 |
SMALL D . Flattening gamma: radiometric terrain correction for SAR imagery[J]. IEEE Trans.on Geoscience and Remote Sensing, 2011, 49 (8): 3081- 3093.
doi: 10.1109/TGRS.2011.2120616 |
22 | RIDLER T W , CALVARD S . Picture thresholding using an iterative selection method[J]. IEEE Trans.on Systems, Man & Cybernetics, 2007, 8 (8): 630- 632. |
23 | TRUSSELL H J . Comments on "picture thresholding using an iterative selection method"[J]. IEEE Trans.on Systems, Man & Cybernetics, 1979, 9 (5): 311. |
24 | MAGID A , ROTMAN S R , WEISS A M . Comments on picture thresholding using an iterative selection method[J]. IEEE Trans.on Systems, Man & Cybernetics, 1990, 20 (5): 1238- 1239. |
25 |
BRUZZONE L , PRIETO D F . Automatic analysis of the diffe-rence image for unsupervised change detection[J]. IEEE Trans.on Geoscience and Remote Sensing, 2000, 38 (3): 1171- 1182.
doi: 10.1109/36.843009 |
26 |
BAZI Y , BRUZZONE L , MELGANI F . An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images[J]. IEEE Trans.on Geoscience and Remote Sensing, 2005, 43 (4): 874- 887.
doi: 10.1109/TGRS.2004.842441 |
27 | WANG G T , WANG Y L , JIAO L C . Adaptive spatial neighborhood analysis and Rayleigh-Gauss distribution fitting for change detection in multi-temporal remote sensing images[J]. Journal of Remote Sensing, 2009, 13 (4): 639- 646. |
28 |
BASSO D , COLNAGO M , AZEVEDO S , et al. Combining morphological filtering, anisotropic diffusion and block-based data replication for automatically detecting and recovering unscanned gaps in remote sensing images[J]. Earth Science Informatics, 2021, 14 (3): 1145- 1158.
doi: 10.1007/s12145-021-00613-6 |
29 |
ROY D , WULDER M , LOVELAND T , et al. Landsat-8: Science and product vision for terrestrial global change research[J]. Remote Sensing of Environment, 2014, 145, 154- 172.
doi: 10.1016/j.rse.2014.02.001 |
30 | 谷鑫志, 曾庆伟, 谌华, 等. 高分三号影像水体信息提取[J]. 遥感学报, 2019, 23 (3): 555- 565. |
GU X Z , ZENG Q W , SHEN H , et al. Study on water information extraction using domestic GF-3 image[J]. Journal of Remote Sensing, 2019, 23 (3): 555- 565. |
[1] | 王彩云, 吴钇达, 王佳宁, 马璐, 赵焕玥. 基于改进的CNN和数据增强的SAR目标识别[J]. 系统工程与电子技术, 2022, 44(8): 2483-2487. |
[2] | 傅东宁, 廖桂生, 黄岩, 张邦杰, 王幸. 基于图拉普拉斯嵌入的合成孔径雷达时变窄带干扰抑制算法[J]. 系统工程与电子技术, 2022, 44(6): 1846-1853. |
[3] | 盖明慧, 张苏, 孙卫天, 倪育德, 杨磊. 复数兼容全变分SAR目标结构特征增强[J]. 系统工程与电子技术, 2022, 44(6): 1862-1872. |
[4] | 徐安林, 张毓, 周峰. 基于Beta过程的高分辨ISAR成像[J]. 系统工程与电子技术, 2022, 44(6): 1873-1879. |
[5] | 纪朋徽, 代大海, 邢世其, 冯德军. 密集虚假运动目标生成方法[J]. 系统工程与电子技术, 2022, 44(5): 1502-1511. |
[6] | 刘丰恺, 黄大荣, 郭新荣, 冯存前. 基于吕氏分布的机动目标参数化平动补偿方法[J]. 系统工程与电子技术, 2022, 44(4): 1166-1173. |
[7] | 陈冬, 句彦伟. 基于语义分割实现的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2022, 44(4): 1195-1201. |
[8] | 周晓玲, 张朝霞, 鲁雅, 王倩, 王琨琨. 基于改进R-FCN的SAR图像识别[J]. 系统工程与电子技术, 2022, 44(4): 1202-1209. |
[9] | 杨磊, 张苏, 盖明慧, 方澄. 高分辨SAR目标成像方向性结构特征增强[J]. 系统工程与电子技术, 2022, 44(3): 808-818. |
[10] | 王俊杰, 冯德军, 胡卫东. 基于时变材料的合成孔径雷达图像二维调制方法[J]. 系统工程与电子技术, 2022, 44(2): 455-462. |
[11] | 方澄, 李慧娟, 路稳, 宋玉蒙, 杨磊. 基于形态学自适应分块的高分辨SAR多特征增强算法[J]. 系统工程与电子技术, 2022, 44(2): 470-479. |
[12] | 雷禹, 冷祥光, 周晓艳, 孙忠镇, 计科峰. 基于改进ResNet网络的复数SAR图像舰船目标识别方法[J]. 系统工程与电子技术, 2022, 44(12): 3652-3660. |
[13] | 贾晓雅, 汪洪桥, 杨亚聃, 崔忠马, 熊斌. 基于YOLO框架的无锚框SAR图像舰船目标检测[J]. 系统工程与电子技术, 2022, 44(12): 3703-3709. |
[14] | 徐正, 巩光众, 罗运华, 李广德. 约束优化的空间变迹算法的旁瓣抑制应用[J]. 系统工程与电子技术, 2022, 44(11): 3298-3304. |
[15] | 刘旗, 张新禹, 刘永祥. 基于门控多尺度匹配网络的小样本SAR目标识别[J]. 系统工程与电子技术, 2022, 44(11): 3346-3356. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||