1 |
LUNDEN J , KOIVUNEN V . Automatic radar waveform recognition[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1 (1): 124- 136.
doi: 10.1109/JSTSP.2007.897055
|
2 |
RIGLING B D, ROUSH C. ACF-based classification of phase modulated waveforms[C]//Proc. of the IEEE Radar Conference, 2010: 287-291.
|
3 |
WANG C, WANG J, ZHANG X D. Automatic radar waveform recognition based on time-frequency analysis and convolutional neural network[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2017: 2437-2441.
|
4 |
ZHANG M , DIAO M , GUO L M . Convolutional neural networks for automatic cognitive radio waveform recognition[J]. IEEE Access, 2017, 5, 11074- 11082.
doi: 10.1109/ACCESS.2017.2716191
|
5 |
GUO Q , YU X , RUAN G Q . LPI radar waveform recognition based on deep convolutional neural network transfer learning[J]. Symmetry, 2019, 11 (4): 540.
doi: 10.3390/sym11040540
|
6 |
NI X , WANG H L , ZHU Y , et al. Multi-resolution fusion convolutional neural networks for intrapulse modulation LPI radar waveforms recognition[J]. IEICE Trans.on Communications, 2020, E103-B (12): 1470- 1476.
doi: 10.1587/transcom.2019EBP3262
|
7 |
秦鑫, 黄洁, 查雄, 等. 基于扩张残差网络的雷达辐射源信号识别[J]. 电子学报, 2020, 48 (3): 456- 462.
doi: 10.3969/j.issn.0372-2112.2020.03.006
|
|
QIN X , HUANG J , ZHA X , et al. Radar emitter signal recognition based on dilated residual network[J]. Acta Electronica Sinica, 2020, 48 (3): 456- 462.
doi: 10.3969/j.issn.0372-2112.2020.03.006
|
8 |
肖易寒, 王亮, 郭玉霞. 基于去噪卷积神经网络的雷达信号调制类型识别[J]. 电子与信息学报, 2021, 43 (8): 2300- 2307.
|
|
XIAO Y H , WANG L , GUO Y X , et al. Radar signal modulation type recognition based on denoising convolutional neural network[J]. Journal of Electronics & Information Technology, 2021, 43 (8): 2300- 2307.
|
9 |
SCHEIRER W J , JAIN L P , BOULT T E . Probability models for open set recognition[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2014, 36 (11): 2317- 2324.
doi: 10.1109/TPAMI.2014.2321392
|
10 |
JAIN L P, SCHEIRER W J, BOULT T E. Multi-class open set recognition using probability of inclusion[C]//Proc. of the 13th European Conference on Computer Vision, 2014: 393-409.
|
11 |
RUDD E M , JAIN L P , SCHEIRER W J , et al. The extreme value machine[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2018, 40 (3): 762- 768.
doi: 10.1109/TPAMI.2017.2707495
|
12 |
BENDALE A, BOULT T E. Towards open set deep networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1563-1572.
|
13 |
OZA P, PATEL V M. C2AE: class conditioned auto-encoder for open-set recognition[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 2302-2311.
|
14 |
YANG H M , ZHANG X Y , YIN F , et al. Convolutional prototype network for open set recognition[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2020, 2358- 2370.
|
15 |
GE Z, DEMYANOV S, GARNAVI R. Generative OpenMax for multi-class open set classification[C]//Proc. of the British Machine Vision Conference, 2017.
|
16 |
NEAL L, OLSON M, FERN X, et al. Open set learning with counterfactual images[C]//Proc. of the 15th European Conference on Computer Vision, 2018: 620-635.
|
17 |
YUE Z Q, WANG T, SUN Q R, et al. Counterfactual zero-shot and open-set visual recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2021.
|
18 |
PAVY A M , RIGLING B D . SV-means: a fast SVM-based level set estimator for phase-modulated radar waveform classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12 (1): 191- 201.
doi: 10.1109/JSTSP.2018.2797798
|
19 |
PAVY A M, RIGLING B D. Phase modulated radar waveform classification using quantile one-class SVMs[C]//Proc. of the IEEE Radar Conference, 2015: 745-750.
|
20 |
郝云飞, 刘章孟, 郭福成, 等. 基于生成对抗网络的信号调制方式的开集识别[J]. 系统工程与电子技术, 2019, 41 (11): 2619- 2624.
|
|
HAO Y F , LIU Z M , GUO F C , et al. Open-set recognition of signal modulation based on generative adversarial networks[J]. Systems Engineering and Electronics, 2019, 41 (11): 2619- 2624.
|
21 |
丁嘉辉, 汤建龙, 于正洋. 轻量化的增量式集成学习算法设计[J]. 系统工程与电子技术, 2021, 43 (4): 861- 867.
|
|
DING J H , TANG J L , YU Z Y . Design of lightweight incremental ensemble learning algorithm[J]. Systems Engineering and Electronics, 2021, 43 (4): 861- 867.
|
22 |
CHEN G Y, QIAO L M, SHI Y M, et al. Learning open set network with discriminative reciprocal points[C]//Proc. of the 16th European Conference on Computer Vision, 2020: 507-522.
|
23 |
CHEN G Y, PENG P X, WANG X Q, et al. Adversarial reciprocal points learning for open set recognition[EB/OL]. [2021-09-20]. https://arxiv.org/abs/2103.00953v1.
|
24 |
XU K, BA J L, KIROS R, et al. Show, attend and tell: neural image caption generation with visual attention[C]//Proc. of the 32nd International Conference on Machine Learning, 2015: 2048-2057.
|
25 |
WOO S, PARK J, LEE J Y. CBAM: convolutional block attention module[C]//Proc. of the 15th European Conference on Computer Vision, 2018: 3-19.
|
26 |
SNELL J. Prototypical networks for few-shot learning[C]//Proc. of the 31st International Conference on Neural Information Processing Systems, 2017: 4080-4090.
|
27 |
HEIN M, ANDRIUSHCHENKO M, BITTERWOLF J, et al. Why ReLU networks yield high-confidence predictions far away from the training data and how to mitigate the problem[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 41-50.
|
28 |
PACE P E . Detecting and classifying low probability of intercept radar[J]. IEEE Aerospace and Electronic Systems Magaizne, 2004, 19 (5): 42- 44.
doi: 10.1109/MAES.2004.1301226
|
29 |
KONG S H , KIM M , HOANG L M , et al. Automatic LPI radar waveform recognition using CNN[J]. IEEE Access, 2018, 6, 4207- 4219.
doi: 10.1109/ACCESS.2017.2788942
|
30 |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 618-626.
|
31 |
SCHEIRER W J , DE REZENDE ROCHA A , SAPKOTA A , et al. Toward open set recognition[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2013, 25 (7): 1757- 1772.
|