| 1 | PINOU D, CHY R, HAYAJNEH T. Electromagnetic warfare and the cybersecurity threat[C]//Proc. of the IEEE 15th International Conference on Dependable, Autonomic and Secure Computing, 2017: 669-674. | 
																													
																						| 2 | WILLETTS B, RITCHIE M, GRIFFITHS H. Optimal time-frequency distribution selection for LPI radar pulse classification[C]//Proc. of the IEEE International Radar Conference, 2020: 327-332. | 
																													
																						| 3 | ZHANG C H ,  HAN Y T ,  ZHANG P , et al.  Research on modern radar emitter modelling technique under complex electromagnetic environment[J]. The Journal of Engineering, 2019, 2019 (20): 7134- 7138. doi: 10.1049/joe.2019.0579
 | 
																													
																						| 4 | ZHANG C J ,  LIU Y C ,  SI W J .  Synthetic algorithm for de-interleaving radar signals in a complex environment[J]. IET Radar, Sonar & Navigation, 2020, 14 (12): 1918- 1928. | 
																													
																						| 5 | JIANG W ,  FU X J .  Improved algorithm for de-interleaving radar signals with overlapping features in the dynamically varying electromagnetic environment[J]. IET Radar, Sonar & Navigation, 2020, 14 (9): 1328- 1337. | 
																													
																						| 6 | MA Y H, LI Y, ZHU M T, et al. Radar working mode recognition based on hierarchical feature representation and clustering[C]//Proc. of the IET International Radar Conference, 2021: 1629-1633. | 
																													
																						| 7 | 淦文燕, 李德毅, 王建民.  一种基于数据场的层次聚类方法[J]. 电子学报, 2006, 34 (2): 258- 262. | 
																													
																						|  | GAN W Y ,  LI D Y ,  WANG J M .  An hierarchical clustering method based on data fields[J]. Acta Electronic Sinica, 2006, 34 (2): 258- 262. | 
																													
																						| 8 | ZHANG H, WEI H S, SHEN Y C, et al. Bottlenecks and feasible solutions of data field clustering in impact factor, time resolution, selecting core objects and merging process[C]//Proc. of the International Conference on Artificial Intelligence and Security, 2019: 106-120. | 
																													
																						| 9 | CHEN J, ZHANG J Y, WU J H, et al. Review on the research of K-means clustering algorithm in big data[C]//Proc. of the IEEE 3rd International Conference on Electronics and Communication Engineering, 2020: 107-111. | 
																													
																						| 10 | SRIDEVI K N, PRAKASHA S. Comparative study on various clustering algorithms review[C]//Proc. of the IEEE 5th International Conference on Intelligent Computing and Control Systems, 2021: 153-158. | 
																													
																						| 11 | 赵贵喜, 刘永波, 王岩, 等.  数据场和K-means算法融合的雷达信号分选[J]. 雷达科学与技术, 2016, 14 (5): 517- 525. doi: 10.3969/j.issn.1672-2337.2016.05.012
 | 
																													
																						|  | ZHAO G X ,  LIU Y B ,  WANG Y , et al.  Radar signal sorting based on data field and K-means clustering fusion algorithm[J]. Radar Science and Technology, 2016, 14 (5): 517- 525. doi: 10.3969/j.issn.1672-2337.2016.05.012
 | 
																													
																						| 12 | 张怡霄, 郭文普, 康凯, 等.  基于数据场联合PRI变换与聚类的雷达信号分选[J]. 系统工程与电子技术, 2019, 41 (7): 1509- 1515. | 
																													
																						|  | ZHANG Y X ,  GUO W P ,  KANG K , et al.  Radar signal sorting method based on data field combined PRI transform and clustering[J]. Systems Engineering and Electronics, 2019, 41 (7): 1509- 1515. | 
																													
																						| 13 | YOUSEFI T ,  ODABAS M S ,  OKTAS R .  Overview of different methods used in clustering algorithms[J]. Black Sea Journal of Engineering and Science, 2020, 3 (4): 173- 189. | 
																													
																						| 14 | 沙作金. 数据场聚类与平面变换雷达信号分选算法研究[D]. 哈尔滨: 哈尔滨工程大学, 2019. | 
																													
																						|  | SHA Z J. Research on data field clustering and planar transform radar signal sorting algorithm[D]. Harbin: Harbin Engineering University, 2019. | 
																													
																						| 15 | 郜丽鹏, 沙作金.  一种改进的数据场聚类算法[J]. 应用科技, 2019, 46 (6): 30- 34. | 
																													
																						|  | GAO L P ,  SHA Z J .  An improved data field clustering algorithm[J]. Applied Science and Technology, 2019, 46 (6): 30- 34. | 
																													
																						| 16 | RODRIGUEZ A ,  LAIO A .  Clustering by fast search and find of density peaks[J]. Science, 2014, 344 (6191): 1492- 1496. doi: 10.1126/science.1242072
 | 
																													
																						| 17 | ZHU X H ,  SHANG J L ,  SUN Y , et al.  PSO-CFDP: a particle swarm optimization-based automatic density peaks clustering method for cancer subtyping[J]. Human Heredity, 2019, 84 (1): 9- 20. doi: 10.1159/000501481
 | 
																													
																						| 18 | LI H B, ZHAO J, ZHANG Y. Signals deinterleaving for ES systems using improved CFSFDP algorithm[C]//Proc. of the IEEE Radar Conference, 2019: 1-5. | 
																													
																						| 19 | CAROTENUTO V ,  MAIO A D .  A clustering approach for jamming environment classification[J]. IEEE Trans.on Aerospace and Electronic Systems, 2021, 57 (3): 1903- 1918. doi: 10.1109/TAES.2021.3050655
 | 
																													
																						| 20 | SUI J P ,  LIU Z ,  LIU L , et al.  Online non-cooperative radar emitter classification from evolving and imbalanced pulse streams[J]. IEEE Sensors Journal, 2020, 20 (14): 7721- 7730. doi: 10.1109/JSEN.2020.2981976
 | 
																													
																						| 21 | 胡建华, 尹慧琳.  基于PSO-TVAC的中心自适应权的FCM聚类算法[J]. 应用数学进展, 2021, 10 (4): 953- 962. | 
																													
																						|  | HU J H ,  YIN H L .  FCM clustering algorithm based on PSO-TVAC algorithm with adaptively weighted centers[J]. Advances in Applied Mathematics, 2021, 10 (4): 953- 962. | 
																													
																						| 22 | DENG D S. DBSCAN clustering algorithm based on density[C]//Proc. of the IEEE 7th International Forum on Electrical Engineering and Automation, 2020: 949-953. | 
																													
																						| 23 | WANG C X ,  JI M ,  WANG J , et al.  An improved DBSCAN method for LiDAR data segmentation with automatic eps estimation[J]. Sensors, 2019, 19 (1): 172- 198. doi: 10.3390/s19010172
 | 
																													
																						| 24 | BELLAVISTA P, CAMPESTRI M, FOSCHINI L, et al. Clustering of spatial data with DBSCAN: an assessment of stark[C]//Proc. of the IEEE Symposium on Computers and Communications, 2019: 1-6. | 
																													
																						| 25 | MA Y H ,  HAO Y .  Antenna classification using gaussian mixture models (GMM) and machine learning[J]. IEEE Open Journal of Antennas and Propagation, 2020, 1 (1): 320- 328. | 
																													
																						| 26 | GONG X H, MENG H D, WANG X Q. A GMM-based algorithm for classification of radar emitters[C]//Proc. of the IEEE 9th International Conference on Signal Processing, 2008: 2543-2546. | 
																													
																						| 27 | MURAT S ,  NECMETTIN Y ,  BUNYAMIN Y .  An improvement on Fibonacci search method in optimization theory[J]. Applied Mathematics and Computation, 2004, 147 (3): 893- 901. doi: 10.1016/S0096-3003(02)00828-7
 | 
																													
																						| 28 | PATRANABIS D ,  PAUL A ,  DEY A .  Efficient enhancement/lowering of integrator and differentiator time constants with Fibonacci numbers helping their evaluation[J]. IEEE Trans.on Circuits & Systems, 1982, 29 (6): 409- 411. | 
																													
																						| 29 | FISHER P S ,  KOHLBECKER E E .  A generalized Fibonacci sequence[J]. The American Mathematical Monthly, 1961, 68 (5): 455- 459. doi: 10.1080/00029890.1961.11989696
 | 
																													
																						| 30 | HOU X D ,  ZHANG T ,  XIONG G , et al.  A novel steganalysis framework of heterogeneous images based on GMM clustering[J]. Signal Processing: Image Communication, 2014, 29 (3): 385- 399. doi: 10.1016/j.image.2014.01.006
 | 
																													
																						| 31 | BALA R ,  SIKKA S ,  SINGH J .  A comparative analysis of clustering algorithms[J]. International Journal of Computer Applications, 2014, 100 (15): 35- 39. doi: 10.5120/17603-8293
 |