1 |
MOHAMED A F , LEANDROS M , SOTIRIS M , et al. Deep learning for cyber security intrusion detection: approaches, datasets, and comparative study[J]. Journal of Information Security and Applications, 2020,
doi: 10.1016/j.jisa.2019.102419
|
2 |
HAO S Y, LONG J, YANG Y C. Detecting web attacks using Bi-LSTM model based on deep learning[C]//Proc. of the International Conference on Security and Privacy in New Computing Environments, 2019: 551-563.
|
3 |
KIM J Y, KIM J, THU H L T, et al. Long short term memory recurrent neural network classifier for intrusion detection[C]//Proc. of the International Conference on Platform Technology and Service, 2016.
|
4 |
SUN P F , LIU P J , LI Q , et al. Extracting features using CNN-LSTM hybrid network for intrusion detection system[J]. Security and Communication Networks, 2020,
doi: 10.1155/2020/8890306
|
5 |
谢康. 基于神经网络的入侵检测相关技术研究[D]. 济南: 山东大学, 2016.
|
|
XIE K. Research on intrusion detection technology based on neural network[D]. Ji'nan: Shandong University, 2016.
|
6 |
DORADO R F , DURÁN S J . Short-term load forecasting using encoder-decoder WaveNet: application to the French grid[J]. Energies, 2021,
doi: 10.3390/en14092524
|
7 |
谢潇雨. 基于卷积神经网络的入侵检测模型研究[D]. 南京: 南京邮电大学, 2019.
|
|
XIE X Y. Research on intrusion detection model based on convolutional neural network[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2019.
|
8 |
WANG H , CAO Z J , HONG B . A network intrusion detection system based on convolutional neural network[J]. Journal of Intelligent & Fuzzy Systems, 2020, 38 (6): 7623- 7637.
|
9 |
ARIAV I , COHEN I . An end-to-end multimodal voice activity detection using WaveNet encoder and residual networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13 (2): 265- 274.
doi: 10.1109/JSTSP.2019.2901195
|
10 |
CHEN Y S , FENG N X , HONG B B , et al. Express WaveNet: a lower parameter optical neural network with random shift wavelet pattern[J]. Optics Communications, 2021, 485, 126709.
doi: 10.1016/j.optcom.2020.126709
|
11 |
YUAN X Y, LI C H, LI X L. Deep defense: identifying DDOS attack via deep learning[C]//Proc. of the IEEE International Conference on Smart Computing, 2017.
|
12 |
RAI A. Optimizing a new intrusion detection system using ensemble methods and deep neural network[C]//Proc. of the 4th International Conference on Trends in Electronics and Informatics, 2020.
|
13 |
WANKHEDE S, KSHIRSAGAR D. DOS attack detection using machine learning and neural network[C]//Proc. of the 4th International Conference on Computing Communication Control and Automation, 2018.
|
14 |
GONG Y L , LU N , ZHANG J J . Application of deep learning fusion algorithm in natural language processing in emotional semantic analysis[J]. Concurrency and Computation: Practice and Experience, 2019, 31 (10): e4779.
doi: 10.1002/cpe.4779
|
15 |
周航, 凌捷. 改进的基于BiLSTM的网络入侵检测方法[J]. 计算机工程与设计, 2020, 41 (7): 1809- 1814.
|
|
ZHOU H , LING J . Improved network intrusion detection method based on BiLSTM[J]. Computer Engineering and Design, 2020, 41 (7): 1809- 1814.
|
16 |
RAN Z Y , ZHENG D S , LAI Y L , et al. Applying stack bidirectional LSTM model to intrusion detection[J]. CMC-Computers Materials & Continua, 2020, 65 (1): 309- 320.
|
17 |
YAN X , SHI Z M , WANG G C , et al. Detection of possible hydrological precursor anomalies using long short-term memory: a case study of the 1996 Lijiang earthquake[J]. Journal of Hydrology, 2021,
doi: 10.1016/j.jhydrol.2021.126369
|
18 |
AZAM R, MUHAMMAD J S, SHAHID M A. Machine and deep learning based comparative analysis using hybrid approaches for intrusion detection system[C]//Proc. of the 3rd International Conference on Advancements in Computational Sciences, 2020.
|
19 |
SINGH N B , SINGH M M , SARKAR A , et al. A novel wide & deep transfer learning stacked GRU framework for network intrusion detection[J]. Journal of Information Security and Applications, 2021,
doi: 10.1016/j.jisa.2021.102899
|
20 |
YAN B H , HAN G D . LA-GRU: building combined intrusion detection model based on imbalanced learning and gated recurrent unit neural network[J]. Security and Communication Networks, 2018,
doi: 10.1155/2018/6026878
|
21 |
KAMAL A , ABULAISH M . CAT-BiGRU: convolution and attention with bi-directional gated recurrent unit for self-deprecating sarcasm detection[J]. Cognitive Computation, 2021, 14, 1- 19.
|
22 |
SONG Y , LI Z L , CHENG C . ARP attack intrusion detection method of industrial control system based on CNN-BILSTM[J]. Computer Application Research, 2020, 37 (S2): 242- 244.
|
23 |
DÜDÜKÇÜ H V, TAŞKIRAN M, KAHRAMAN N. LSTM and WaveNet implementation for predictive maintenance of turbofan engines[C]//Proc. of the IEEE 20th International Symposium on Computational Intelligence and Informatics, 2020.
|
24 |
ISHAQUE M, HUDEC L. Feature extraction using deep learning for intrusion detection system[C]//Proc. of the 2nd International Conference on Computer Applications & Information Security, 2019.
|
25 |
ACHARYA T, KHATRI I, ANNAMALAI A, et al. Efficacy of machine learning-based classifiers for binary and multi-class network intrusion detection[C]//Proc. of the IEEE International Conference on Automatic Control & Intelligent Systems, 2021.
|
26 |
SARIKA C K , NISHTHA K . Analysis of KDD-cup′99, NSL-KDD and UNSW-NB15 datasets using deep learning in IoT[J]. Procedia Computer Science, 2020, 167, 1561- 1573.
doi: 10.1016/j.procs.2020.03.367
|
27 |
KOCHER G , GUISHAN K A . Analysis of machine learning algorithms with feature selection for intrusion detection using UNSW-NB15 dataset[J]. International Journal of Network Security & Its Applications, 2021, 13 (1): 21- 31.
|
28 |
HOOGE D L , WAUTERS T , VOLCKAERT B , et al. Inter-dataset generalization strength of supervised machine learning methods for intrusion detection[J]. Journal of Information Security and Applications, 2020,
doi: 10.1016/j.jisa.2020.102564
|
29 |
KAJAL R S D M , AJAY G . Decision tree based algorithm for intrusion detection[J]. International Journal of Advanced Networking and Applications, 2016, 7 (4): 2828- 2834.
|
30 |
夏景明, 李冲, 谈玲, 等. 改进的随机森林分类器网络入侵检测方法[J]. 计算机工程与设计, 2019, 40 (8): 2146- 2150.
|
|
XIA J M , LI C , TAN L , et al. Improved intrusion detection method of random forest classifier network[J]. Computer Engineering and Design, 2019, 40 (8): 2146- 2150.
|
31 |
李俊, 夏松竹, 兰海燕, 等. 基于GRU-RNN的网络入侵检测方法[EB/OL]. 哈尔滨工程大学学报, 2021. DOI: 10.4218/etrij.2019-0476.
|
|
LI J, XIA S Z, LAN H Y, et al. Network intrusion detection method based on GRU-RNN[EB/OL]. Journal of Harbin Engineering University, 2021. DOI: 10.4218/etrij.2019-0476.
|
32 |
JAY S M, MANOLLAS. Efficient deep CNN-BILSTM model for network intrusion detection[C]//Proc. of the 3rd International Conference on Artificial Intelligence and Pattern Recognition, 2020.
|