1 |
梁峰, 李政硕, 宗福兴, 等. 关于我军海上预置能力建设的思考[J]. 军事交通学院学报, 2018, 20 (6): 46- 49.
|
|
LIANG F , LI Z S , ZONG F X , et al. Construction of maritime preposition capability of our army[J]. Journal of Military Transportation University, 2018, 20 (6): 46- 49.
|
2 |
魏振堃, 汪涛, 全琪, 等. 美军舰艇编队远洋作战油料保障现状分析[J]. 国防科技, 2020, 41 (1): 89- 93.
|
|
WEI Z K , WANG T , QUAN Q , et al. Analysis of the current situation of oil support for the U.S. warship fleet in high sea combat[J]. National Defense Technology, 2020, 41 (1): 89- 93.
|
3 |
易亮, 陆杨. 美国海军"分布式杀伤"概念的装备技术支撑[J]. 海军工程大学学报(综合版), 2018, 15 (2): 36- 40.
|
|
YI L , LU Y . United States navy equipment technology for "distributed lethality" concept[J]. Journal of Naval University of Engineering, 2018, 15 (2): 36- 40.
|
4 |
MISHRA M , AN W , SIDOTI D , et al. Context-aware decision support for anti-submarine warfare mission planning within a dynamic environment[J]. IEEE Trans.on Systems, Man, and Cybernetics: Systems, 2020, 50 (1): 318- 335.
doi: 10.1109/TSMC.2017.2731957
|
5 |
LAAN C M , BARROS A I , BOUCHERIE R J , et al. Optimal deployment for anti-submarine operations with time-dependent strategies[J]. The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, 2019, 15 (6): 1- 16.
|
6 |
HEW P , YIAP N . Optimally randomized patrolling of chokepoints for theatre antisubmarine warfare[J]. Military Operations Research, 2018, 23 (1): 49- 56.
|
7 |
KIM R G. Operational planning for theater anti-submarine warfare[D]. Monterey: Naval Postgraduate School, 2017.
|
8 |
BALDESSARI A M. Navy operational planner: anti-submarine warfare with time-dependent performance[D]. Monterey: Naval Postgraduate School, 2017.
|
9 |
DING W J , CAO H , GUO H , et al. Investigation on optimal path for submarine search by an unmanned underwater vehicle[J]. Computers & Electrical Engineering, 2019, 79 (6): 106- 117.
|
10 |
WANG X , YAO P Y , ZHANG J Y , et al. Dynamic resource scheduling for C2 organizations based on multi-objective optimization[J]. IEEE Access, 2019, 2914951.
|
11 |
LOVELACE S C, GARCIA M G, FOSTER J L. Allocating aircraft to reserve maritime patrol (VP) squadrons: an exercise in optimization modeling[R]. Monterey Ca United States: Naval Postgraduate School, 2018.
|
12 |
HAMILTON A , HOLDCROFT S , FENUCCI D , et al. Adaptable underwater networks: the relation between autonomy and communications[J]. Remote Sensing, 2020, 12 (20): 12- 34.
|
13 |
KANDRIS D , NAKAS C , VOMVAS D , et al. Applications of wireless sensor networks: an up-to-date survey[J]. Applied System Innovation, 2020, 3 (1): 14- 38.
doi: 10.3390/asi3010014
|
14 |
BORISOV A , BOSOV A , MILLER B , et al. Passive underwater target tracking: conditionally minimax nonlinear filtering with bearing-Doppler observations[J]. Sensors, 2020, 20 (8): 22- 47.
|
15 |
李涛, 张刚, 成建波. 采用贝叶斯网络的应召反潜目标态势评估[J]. 电光与控制, 2019, 26 (6): 40- 45.
doi: 10.3969/j.issn.1671-637X.2019.06.008
|
|
LI T , ZHANG G , CHENG J B . Situation assessment in on-call anti-submarine warfare using bayesian network[J]. Electronics Optics & Control, 2019, 26 (6): 40- 45.
doi: 10.3969/j.issn.1671-637X.2019.06.008
|
16 |
ZHENG W M, FEI L, YE Z X. Research on modeling and simulation of the anti-submarine patrol aircraft taking call search task using the circular sonar buoy array[C]//Proc. of the MATEC Web of Conferences, 2018: 34-39.
|
17 |
KROER C , WAUGH K , KILIN -KARZAN F , et al. Faster algorithms for extensive-form game solving via improved smoothing functions[J]. Mathematical Programming, 2020, 179 (1): 385- 417.
|
18 |
DAVIS T, WAUGH K, BOWLING M. Solving large extensive-form games with strategy constraints[C]//Proc. of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 1861- 1868.
|
19 |
ETESSAMI K . The complexity of computing a (quasi-) perfect equilibrium for an n-player extensive form game[J]. Games and Economic Behavior, 2021, 125 (1): 107- 140.
|
20 |
BUDI R F S , HADI S P . Majority-dominant-mixed strategy game theory model for deregulated generation expansion planning problem[J]. International Journal on Electrical Engineering and Informatics, 2021, 13 (1): 107- 131.
doi: 10.15676/ijeei.2021.13.1.6
|
21 |
SCHMID M, BURCH N, LANCTOT M, et al. Variance reduction in monte carlo counterfactual regret minimization (VR-MCCFR) for extensive form games using baselines[C]//Proc. of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 2157-2164.
|
22 |
FARINA G, KROER C, SANDHOLM T. Stochastic regret minimization in extensive-form games[C]//Proc. of the International Conference on Machine Learning, 2020: 3018-3028.
|
23 |
BURCH N , MORAVCIK M , SCHMID M . Revisiting CFR+ and alternating updates[J]. Journal of Artificial Intelligence Research, 2019, 64, 429- 443.
doi: 10.1613/jair.1.11370
|
24 |
BROWN N, SANDHOLM T. Solving imperfect-information games via discounted regret minimization[C]//Proc. of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 1829- 1836.
|
25 |
PERCHET V. Finding robust Nash equilibria[C]//Proc. of the Algorithmic Learning Theory, 2020: 725-751.
|
26 |
FARINA G, KROER C, SANDHOLM T. Online convex optimization for sequential decision processes and extensive-form games[C]//Proc. of the AAAI National Conference on Artificial Intelligence, 2019.
|
27 |
FARINA G, KROER C, BROWN N, et al. Stable-predictive optimistic counterfactual regret minimization[C]//Proc. of the International Conference on Machine Learning, 2019: 1853- 1862.
|
28 |
BISCANI F , IZZO D . A parallel global multiobjective framework for optimization: pagmo[J]. Journal of Open Source Software, 2020, 5 (53): 23- 38.
|