系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (8): 2530-2539.doi: 10.12305/j.issn.1001-506X.2022.08.18

• 系统工程 • 上一篇    下一篇

基于模糊聚类和专家评分机制的无人机多层次模块划分方法

杨建峰1,2, 肖和业3, 李亮2, 白俊强3,*, 董维浩2   

  1. 1. 西北工业大学航空学院, 陕西 西安 710072
    2. 中国人民解放军95889部队, 甘肃 酒泉 735018
    3. 西北工业大学无人系统技术研究院, 陕西 西安 710072
  • 收稿日期:2021-07-05 出版日期:2022-08-01 发布日期:2022-08-24
  • 通讯作者: 白俊强
  • 作者简介:杨建峰 (1989—), 男, 硕士研究生, 主要研究方向为飞行器总体设计|肖和业 (1985—), 男, 副研究员, 博士, 主要研究方向为飞行器结构设计|李亮 (1982—), 男, 高级工程师, 本科, 主要研究方向为制导武器试验与鉴定|白俊强 (1971—), 男, 教授, 博士, 主要研究方向为飞行器气动设计|董维浩 (1984—), 男, 工程师, 本科, 主要研究方向为制导武器试验与鉴定

Multi-level module partition method of UAV based on fuzzy clustering and expert scoring mechanism

Jianfeng YANG1,2, Heye XIAO3, Liang LI2, Junqiang BAI3,*, Weihao DONG2   

  1. 1. School of Aeronautic, Northwestern Polytechnical University, Xi'an 710072, China
    2. Unit 95889 of the PLA, Jiuquan 735018, China
    3. Unmanned System Technology Research Institute, Northwestern Polytechnical University, Xi'an 710072, China
  • Received:2021-07-05 Online:2022-08-01 Published:2022-08-24
  • Contact: Junqiang BAI

摘要:

本文基于初步划分-综合评价-精准划分的多层次递进模块划分架构, 为模块化无人机设计中模块划分提供可信、有效的方法。以提升模块划分结果的可信度为目标, 在模块划分指标评价中引入基于专家信度的评分机制, 形成了基于模糊聚类和专家评分机制的多层次模块划分方法。以一次性、可重复使用无人机为例, 采用本文提出的模块划分方法, 进行零部件聚类并形成模块划分方案。由模块划分结果可知, 本文模块划分方法可对不同模式的无人机获得符合其使用特点、可信的模块划分方案, 进而验证了方法的合理性和有效性。

关键词: 模块化无人机, 模块划分方法, 模糊聚类, 专家信度, 网络层次结构, 粒子群优化算法

Abstract:

Based on the multi-level progressive module partition architecture of preliminary partition-comprehensive evaluation-precision partition, this paper provides a credible and effective method for module partition in modular unmanned aerial vehicle (UAV) design. In order to improve the credibility of the results of module partition, a scoring mechanism using expert reliability is introduced in the evaluation of module partition indicators. A multi-level module partition method is presented by applying fuzzy clustering and expert scoring mechanism. Taking the one-time and reusable UAVs as examples, the proposed module partition method is adopted to cluster the components and form a module partition scheme. Through the results of the module partition, it can be seen that the proposed method can provide a reliable module partition scheme and satisfy their application characteristics for different kinds of UAVs. Therefore, the rationality and effectiveness of the method is further verified.

Key words: modular unmanned aerial vehicle (UAV), module partition method, fuzzy clustering, expert reliability, network hierarchy structure, particle swarm optimization (PSO) algorithm

中图分类号: