1 |
BABER C , VANCE C . Supporting decision making in a simulated air defence activity[J]. Contemporary Ergonomics & Human Factors, 2020,
|
2 |
葛顺, 夏学知. 用于战术意图识别的动态序列贝叶斯网络[J]. 系统工程与电子技术, 2014, 36 (1): 76- 83.
|
|
GE S , XIA X Z . DSBN used for recognition of tactical intention[J]. Systems Engineering and Electronics, 2014, 36 (1): 76- 83.
|
3 |
WRIGHT E, MAHONEY S, LASKEY K B, et al. Multi-entity Bayesian networks for situation assessment[C]//Proc. of the International Conference on Information Fusion, 2002: 804-811.
|
4 |
CAO L, ZHANG A, WANG Q, et al. Research on situation assessment of UCAV based on dynamic Bayesian networks in complex environment[C]//Proc. of the International Conference on Intelligent Computing for Sustainable Energy and Environment, 2010: 58-68.
|
5 |
尹翔, 张萌, 陈梦乔. 基于判别分析的空中目标作战意图识别[J]. 弹箭与制导学报, 2018, 38 (3): 46- 50.
|
|
YIN X , ZHANG M , CHEN M Q . Combat intention recognition of the target in the air based on discriminant analysis[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2018, 38 (3): 46- 50.
|
6 |
ZHANG W X, HILL R W. A template-based and pattern-driven approach to situation awareness and assessment in virtual humans[C]// Proc. of the 4th International Conference on Autonomous Agents, 2000: 116-123.
|
7 |
岳师光. 面向计算机生成兵力的意图识别建模与推理方法研究[D]. 长沙: 国防科学技术大学, 2016.
|
|
YUE S G. Research on modeling and inference of CGF-oriented intention recognition[D]. Changsha: National University of Defense Technology, 2016.
|
8 |
张振兴, 杨任农, 房育寰, 等. 基于IL-HMM的目标机动动作识别[J]. 飞行力学, 2018, 36 (5): 92- 96.
|
|
ZHANG Z X , YANG R N , FANG Y H , et al. Target maneuver recognition based on IL-HMM model[J]. Flight Dynamics, 2018, 36 (5): 92- 96.
|
9 |
陶九阳, 吴琳, 王驰, 等. 基于深度学习的战场态势变化速度预测模型[J]. 系统仿真学报, 2018, 30 (3): 785- 792.
|
|
TAO J Y , WU L , WANG C , et al. A model for battlefield situation change rate prediction based on deep learning[J]. Journal of System Simulation, 2018, 30 (3): 785- 792.
|
10 |
朱丰, 胡晓峰, 贺筱媛, 等. 一种基于CNN的样本不足战场包围态势认知方法[J]. 系统仿真学报, 2017, 29 (10): 2291- 2300.
|
|
ZHU F , HU X F , HE X Y , et al. A CNN based cognitive method to battlefields encompassing situation with insufficient samples[J]. Journal of System Simulation, 2017, 29 (10): 2291- 2300.
|
11 |
欧微, 柳少军, 贺筱媛, 等. 战场对敌目标战术意图智能识别模型研究[J]. 计算机仿真, 2017, 34 (9): 10- 14.10-14, 19
doi: 10.3969/j.issn.1006-9348.2017.09.003
|
|
OU W , LIU S J , HE X Y , et al. Study on the intelligent re-cognition on model of enemy targets tactical intention on battlefield[J]. Computer Simulation, 2017, 34 (9): 10- 14.10-14, 19
doi: 10.3969/j.issn.1006-9348.2017.09.003
|
12 |
姚庆锴, 柳少军, 贺筱媛, 等. 基于深度学习的空中任务识别方法研究[J]. 系统仿真学报, 2017, 29 (9): 2227- 2231.
|
|
YAO Q K , LIU S J , HE X Y , et al. Research of air mission recognition method based on deep learning[J]. Journal of System Simulation, 2017, 29 (9): 2227- 2231.
|
13 |
郭圣明, 贺筱媛, 吴琳, 等. 基于强制稀疏自编码神经网络的作战态势评估方法研究[J]. 系统仿真学报, 2018, 30 (3): 772- 784.772-784, 800
|
|
GUO S M , HE X Y , WU L , et al. Situation assessment approach for air defense operation system based on force-sparsed stacked-auto encoding neural networks[J]. Journal of System Simulation, 2018, 30 (3): 772- 784.772-784, 800
|
14 |
姚晓毅, 郭圣明, 胡晓峰, 等. 基于MINE-FNA组合算法的防空体系指标网构建方法[J]. 指挥控制与仿真, 2016, 38 (1): 94- 100.
doi: 10.3969/j.issn.1673-3819.2016.01.020
|
|
YAO X Y , GUO S M , HU X F , et al. Indices network construction for air defense system of system based on MINE-FNA assembled algorithm[J]. Command Control & Simulation, 2016, 38 (1): 94- 100.
doi: 10.3969/j.issn.1673-3819.2016.01.020
|
15 |
KIM J . A comparison of guided missile simulations between EADSIM and SADM in composite combat mission planning simulation environments[J]. Journal of Korea Multimedia Society, 2020, 23 (8): 1066- 1074.
|
16 |
GOODFELLOW I J , POUGET-ABADIE J , MIRZA M , et al. Generative adversarial networks[J]. Advances in Neural Information Processing Systems, 2014, 3, 2672- 2680.
|
17 |
RADFORD A, METZ L, CHINTALA S, et al. Unsupervised representation learning with deep convolutional generative adversarial networks[C]//Proc. of the International Conference on Learning Representations, 2016.
|
18 |
KARRAS T, AILA T, LAINE S, et al. Progressive growing of GANs for improved quality, stability, and variation[C]//Proc. of the International Conference on Learning representations, 2018.
|
19 |
HWANG J , AZERNIKOV S , EFROS A A , et al. Learning beyond human expertise with generative models for dental restorations[J]. Computer Vision and Pattern Recognition, 2018,
|
20 |
ISOLA P , ZHU J , ZHOU T , et al. Image-to-image translation with conditional adversarial networks[J]. Computer Vision and Pattern Recognition, 2017, 5967- 5976.
|
21 |
LIU M , BREUEL T M , KAUTZ J , et al. Unsupervised image-to-image translation networks[J]. Neural Information Processing Systems, 2017, 700- 708.
|
22 |
WANG T C , LIU M Y , ZHU J Y , et al. High-resolution image synthesis and semantic manipulation with conditional GANs[J]. Computer Vision and Pattern Recognition, 2018, 8798- 8807.
|
23 |
REED S E , AKATA Z , MOHAN S , et al. Learning what and where to draw[J]. Neural Information Processing Systems, 2016, 217- 225.
|
24 |
NGUYEN A T , CLUNE J , BENGIO Y , et al. Plug & play generative networks: conditional iterative generation of images in latent space[J]. Computer Vision and Pattern Recognition, 2017, 3510- 3520.
|
25 |
TAN F W, FENG S, ORDONEZ V, et al. Text2Scene: generating compositional scenes from Textul descriptions[C]// Proc. of the IEEE Computer Vision and Pattern Recognition, 2020.
|
26 |
YARLAGADDA S K , GVERA D , BESTAGINI P , et al. Satellite image forgery detection and localization using gan and one-class classifier[J]. Electronic Imaging, 2018, 2018 (7): 2141- 2149.
|
27 |
CHUNG Y A, WU C C, SHEN C H, et al. Unsupervised learning of audio segment representations using sequence-to-sequence recurrent neural networks[C]//Proc. of the Interspeech, 2016: 765-769.
|
28 |
孔德江, 汤斯亮, 吴飞. 时空嵌入式生成对抗网络的地点预测方法[J]. 模式识别与人工智能, 2018, 31 (1): 49- 60.
|
|
KONG D J , TANG S L , WU F . Location prediction method for space-time embedded generation of antagonistic network[J]. Pattern Recognition and Artificial Intelligence, 2018, 31 (1): 49- 60.
|
29 |
殷小静, 胡晓峰, 刘戎翔, 等. 基于GAN的体系能力图谱生成方法[J]. 系统工程与电子技术, 2020, 42 (10): 2257- 2264.
doi: 10.3969/j.issn.1001-506X.2020.10.14
|
|
YIN X J , HU X F , LIU R X , et al. Generative method of the SOS capability maps based on GAN[J]. Systems Engineering and Electronics, 2020, 42 (10): 2257- 2264.
doi: 10.3969/j.issn.1001-506X.2020.10.14
|
30 |
RONNEBERGER O , FISCHER P , BROX T , et al. U-Net: convolutional networks for biomedical image segmentation[J]. Medical Image Computing and Computer Assisted Intervention, 2015, 234- 241.
|