1 |
DENG Z P , SUN H , ZHOU S L , et al. Learning deep ship detector in SAR images from scratch[J]. IEEE Trans.on Geo-science and Remote Sensing, 2019, 1- 19.
|
2 |
张玉莲. 光学图像海面舰船目标智能检测与识别方法研究[D]. 长春: 中国科学院大学, 2021.
|
|
ZHANG Y L. Research on intelligent detection and recognition methods of ship targets on the sea surface in optical images[D]. Changchun: Chinese Academy of Science, 2021.
|
3 |
LIU S C , DU Q , TONG X H , et al. Unsupervised change detection in multispectral remote sensing images via spectral spatial band expansion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 3578- 3587.
|
4 |
张筱晗, 姚力波, 吕亚飞, 等. 基于中心点的遥感图像多方向舰船目标检测[J]. 光子学报, 2020, 49 (4): 210- 218.
|
|
ZHANG X H , YAO L B , LYU Y F , et al. Center based model for arbitrary-oriented ship detection in remote sensing images[J]. Acta Photonica Sinica, 2020, 49 (4): 210- 218.
|
5 |
史文旭, 江金洪, 鲍胜利. 基于特征融合的遥感图像舰船目标检测方法[J]. 光子学报, 2020, 49 (7): 57- 67.
|
|
SHI W X , JIANG J H , BAO S L . Ship detection method in remote sensing image based on feature fusion[J]. Acta Photonica Sinica, 2020, 49 (7): 57- 67.
|
6 |
张筱晗, 姚力波, 吕亚飞, 等. 双向特征融合的数据自适应SAR图像舰船目标检测模型[J]. 中国图象图形学报, 2020, 25 (9): 1943- 1952.
|
|
ZHANG X H , YAO L B , LYU Y F , et al. Data-adaptive single-shot ship detector with a bidirectional feature fusion module for SAR images[J]. Journal of Image and Graphics, 2020, 25 (9): 1943- 1952.
|
7 |
赵江洪, 张晓光, 杨璐, 等. 深度学习的遥感影像舰船目标检测[J]. 测绘科学, 2020, 45 (3): 110- 116.110-116, 134
|
|
ZHAO J H , ZHANG X G , YANG L , et al. Deep learning based detection method for remote sensing images[J]. Science of Surveying and Mapping, 2020, 45 (3): 110- 116.110-116, 134
|
8 |
陈冬, 句彦伟. 基于改进型YOLOv3的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2021, 43 (4): 937- 943.
|
|
CHENG D , JU Y W . Ship detection in SAR image based on improved YOLOv3[J]. Systems Engineering and Electronics, 2021, 43 (4): 937- 943.
|
9 |
仲伟峰, 郭峰, 向世明, 等. 旋转矩形区域的遥感图像舰船目标检测模型[J]. 计算机辅助设计与图形学学报, 2019, 31 (11): 1935- 1945.
|
|
ZHONG W F , GUO F , XIANG S M , et al. Ship detection in remote sensing based with rotated rectangular region[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31 (11): 1935- 1945.
|
10 |
LIU Z K, HU J G, WENG L B, et al. Rotated Region-based CNN for ship detection[C]//Proc. of the IEEE International Conference on Image Processing, 2017: 900-904.
|
11 |
LIU L, PAN Z, LEI B. Learning a rotation invariant detector with rotatable bounding box[EB/OL]. https://arxiv.org/abs/1711.09405v1.
|
12 |
DING J, XUE N, LONG Y, et al. Learning roI transformer for oriented object detection in aerial images[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 2844-2853.
|
13 |
ZHANG Z H , GUO W W , ZHU S N , et al. Toward arbitrary-oriented ship detection with rotated region proposal and discrimination networks[J]. IEEE Geoscience & Remote Sensing Letters, 2018,
|
14 |
WEI H R , ZHANG Y , CHANG Z H , et al. Oriented objects as pairs of middle lines[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169, 268- 279.
doi: 10.1016/j.isprsjprs.2020.09.022
|
15 |
WEI H R, ZHANG Y, WANG B, et al. X-linenet: detecting aircraft in remote sensing images by a pair of intersecting line segments[EB/OL]. [2021-06-30]. https://arxiv.org/abs/1907.12474.
|
16 |
ZHOU X Y, WANG D Q, KRHENBVHL P. CenterNet: objects as points[EB/OL]. [2021-09-01]. https://arxiv.org/abs/1904.07850v1.
|
17 |
ZHOU Y Z, YE Q X, QIU Q, et al. Oriented response networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4961-4970.
|
18 |
YANG L X, ZHANG R Y, LI L D, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks[C]//Proc. of the 38th International Conference on Machine Learning, 2021: 11863-11874.
|
19 |
YU F, WANG D Q, SHELHAMER E, et al. Deep layer aggregation[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 2403-2413.
|
20 |
NEWELL A, YANG K, JIA D. Stacked hourglass networks for human pose estimation[C]//Proc. of the European Conference on Computer Vision, 2016.
|
21 |
HU J , SHEN L , ALBANIE S , et al. Squeeze-and-excitation networks[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2017, 42 (8): 2011- 2023.
|
22 |
WOO S , PARK J , LEE J Y , et al. CBAM: convolutional block attention module[J]. European Conference on Computer Vision, 2018, 3- 19.
|
23 |
ZHANG F, WANG X Y, ZHOU S L, et al. Arbitrary-oriented ship detection through center-head point extraction[EB/OL]. [2021-06-30]. https://arxiv.org/abs/2101.11189.
|
24 |
LI M J, GUO W W, ZAHNG Z H, et al. Rotated region based fully convolutional network for ship detection[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2018: 673-676.
|
25 |
LIN T, GOYAL P, GIRSHICK R B, et al. Focal loss for dense object detection[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 2999-3007.
|
26 |
YANG X, YANG J, YAN J, et al. Scrdet: towards more robust detection for small, cluttered and rotated objects[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2019: 8231-8240.
|
27 |
YANG X, YAN J. Arbitrary-oriented object detection with circular smooth label[EB/OL]. [2021-09-01]. https://arxiv.org/abs/2003.05597,2020.
|
28 |
YANG X, YAN J C, FENG Z M, et al. R3det: refined single-stage detector with feature refinement for rotating object[C]//Proc. of the 35th AAAI Conference on Artificial Intelligence, 2019: 3163-3171.
|
29 |
QIAN W, YANG X, PENG S, et al. Learning modulated loss for rotated object detection[C]//Proc. of the 35th AAAI Conference on Artificial Intelligence, 2021: 2458-2466
|
30 |
HAN J M , DING J , LI J , et al. Align deep features for oriented object detection[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021,
|
31 |
MA J Q , SHAO W Y , YE H , et al. Arbitrary-oriented scene text detection via rotation proposals[J]. IEEE Trans.on Multimedia, 2018,
|