1 |
陈耀. 错位的频谱: 太阳爆发的奥秘[EB/OL]. [2021-08-13]. http://blog.sciencenet.cn/blog-685476-826124.html.
|
|
CHEN Y. Misplaced spectrum: the mystery of the solar eruption[EB/OL]. [2021-08-13]. http://blog.sciencenet.cn/blog-685476-826124.html.
|
2 |
谭程明. 太阳活动的射电爆发研究及多波段观测综合分析[D]. 北京: 中国科学院国家天文台, 2007.
|
|
TAN C M. Study on radio burst of solar activity and comprehensive analysis of multi band observation[D]. Beijing: National Astronomical Observatory, Chinese Academy of Sciences, 2007.
|
3 |
FU Q J , JI H R , QIN Z H , et al. A new solar broadband radio spectrometer (SBRS) in China[J]. Solar Physics, 2004, 222 (1): 167- 173.
doi: 10.1023/B:SOLA.0000036876.14446.dd
|
4 |
SALMANE H , WEBER R , ABED-MERAIM K , et al. A method for the automated detection of solar radio bursts in dynamic spectra[J]. Journal of Space Weather and Space Climate, 2018, 8 (15): 123- 134.
|
5 |
FU Q J , QIN Z H , JI H R , et al. A broadband spectrometer for decimeter and microwave radio bursts[J]. Solar Physics, 1995, 160 (1): 97- 103.
doi: 10.1007/BF00679098
|
6 |
LOBZIN V V , CAIRNS I H , ROBINSON P A , et al. Automatic recognition of type Ⅲ solar radio bursts: automated radio burst identification system method and first observations[J]. Space Weather the International Journal of Research & Applications, 2009, 7 (4): 67- 85.
|
7 |
GU B , SHENG V S , TAY K Y , et al. Incremental support vector learning for ordinal regression[J]. IEEE Trans.on Neural Networks & Learning Systems, 2015, 26 (7): 1403- 1416.
|
8 |
CHEN Z , MA L , XU L , et al. Imaging and representation learning of solar radio spectrums for classification[J]. Multimedia Tools & Applications, 2016, 75 (5): 2859- 2875.
|
9 |
陈思思. 基于卷积神经网络的太阳射电频谱图的分类算法研究[D]. 深圳: 深圳大学, 2018.
|
|
CHEN S S. Research on classification algorithm of solar radio spectrum based on convolutional neural network[D]. Shenzhen: Shenzhen University, 2018.
|
10 |
崔泽潇. 基于异常值检测和K均值聚类的太阳射电频谱图像自动检测方法研究[D]. 昆明: 云南大学, 2019.
|
|
CUI Z X. Research on automatic detection method of solar radio spectrum image based on outlier detection and K-means clustering[D]. Kunming: Yunnan University, 2019.
|
11 |
张巧曼. 太阳射电爆发事件的分类与定位检测方法研究[D]. 威海: 山东大学, 2020.
|
|
ZHANG Q M. Research on classification and location detection methods of solar radio burst events[D]. Weihai: Shandong University, 2020.
|
12 |
JANKOWSKI N , DUCH W , GRABCZEWSKI K . Meta-learning in computational intelligence[M]. Berlin: Springer Science and Business Media, 2011.
|
13 |
LI F F , FERGUS R , PERONA P . One-shot learning of object categories[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2006, 28 (4): 594- 611.
doi: 10.1109/TPAMI.2006.79
|
14 |
SHEN X Y , HERTZMANN A , JIA J Y , et al. Automatic portrait segmentation for image stylization[J]. Computer Graphics Forum, 2016, 35 (2): 93- 102.
doi: 10.1111/cgf.12814
|
15 |
GARCIA-GARCIA A , ORTS-ESCOLANO S , OPREA S , et al. A survey on deep learning techniques for image and video semantic segmentation[J]. Applied Soft Computing, 2018, 70 (4): 41- 65.
|
16 |
LAKE B M, SALAKHUTDINOV R, TENENBAUM J B. One-shot learning by inverting a compositional causal process[C]//Proc. of the Conference and Workshop on Neural Information Processing Systems, 2013: 2526-2534.
|
17 |
SALAKHUTDINOV R, TENENBAUM J, TORRALBA A. One-shot learning with a hierarchical nonparametric Bayesian Model[C]//Proc. of the ICML Workshops, 2012: 195-207.
|
18 |
MUNKHDALAI T, YU H. Meta networks[C]//Proc. of the Machine Learning Machine, 2017: 2554-2563.
|
19 |
LI X Y , LONG S P , ZHU J . Survey of few-shot learning based on deep neural network[J]. Application Research of Computers, 2020, 37 (8): 2241- 2247.
|
20 |
SUNG F, ZHANG L, XIANG T, et al. Learning to learn: Meta-Critic networks for sample efficient learning[EB/OL]. [2021-08-20]. https://arXiv.org/abs/1706.09529.
|
21 |
LU J, GONG P H, YE J P, et al. Learning from very few samples: a survey[EB/OL]. [2021-08-20]. https://arXiv.org/abs/2009.02653v2.
|
22 |
SNELL J, SWERSKY K, ZEMEL R S. Prototypical networks for few-shot learning[EB/OL]. [2021-08-20]. https://arXiv.org/abs/1703.05175.
|
23 |
ORIAL V, CHARLES B, TIMOTHY L, et al. Matching networks for one shot learning[EB/OL]. [2021-08-20]. https://arXiv.org/abs/1606.04080v2.
|
24 |
SUNG F, YANG Y X, ZHANG L, et al. Learning to compare: relation network for few-shot learning[EB/OL]. [2021-08-20]. https://arXiv.org/abs/1711.06025.
|
25 |
SANTORO A, BARTUNOV S, BOTVINICK M, et al. One-shot learning with memory-augmented neural networks[EB/OL]. [2021-08-20]. https://arXiv.org/abs/1605.06065.
|
26 |
GRAVES A, WAYNE G. Neural turing, machines[EB/OL]. [2021-08-20]. https://arXiv.org/abs/1410.5401.
|
27 |
FINN C, ABBEEL P, LEVINE S. model-agnostic meta-learning for fast adaptation of deep networks[C]//Proc. of International Conference on Machine Learning, 2017: 1126-1135.
|
28 |
SACHIN R, HUGO L. Optimization as a model for few-shot learning[C]//Proc. of the International Learning Representations, 2017: 3981-3989.
|
29 |
MARCIN A, MISHA D, SERGIO G C, et al. Learning to learn by gradient descent by gradient descent[EB/OL]. [2021-08-20]. https://arXiv.org/abs/1606.04474.
|
30 |
LI Z G, ZHOU F W, CHEN F, et al. Meta-SGD: learning to learn quickly for few-shot learning[EB/OL]. [2021-08-20]. https://arXiv.org/abs/1707.09835.
|
31 |
ALEX N, JOSHUA A, JOHN S, et al. On first-order meta-learning algothrim[EB/OL]. [2021-08-20]. https://arXiv.org/abs/1803.02999.
|
32 |
HOCHREITER S , SCHMIDHUBER J . Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780.
doi: 10.1162/neco.1997.9.8.1735
|
33 |
CHEN Z, MA L, XU L, et al. Multimodal learning for classification of solar radio spectrum[C]//Proc. of the IEEE International Conference on Systems, Man, and Cybernetics, 2015: 1035-1040.
|