1 |
周东华, 魏慕恒, 司小胜. 工业过程异常检测、寿命预测与维修决策的研究进展[J]. 自动化学报, 2013, 39 (6): 711- 722.
|
|
ZHOU D H , WEI M H , SI X S . Research progress of anomaly detection, life prediction and maintenance decision in industrial process[J]. Acta Automatica Sinica, 2013, 39 (6): 711- 722.
|
2 |
朱敏, 刘奇, 刘星, 等. 基于LMKL和OC-ELM的航空电子部件故障检测方法[J]. 系统工程与电子技术, 2020, 42 (6): 1424- 1432.
|
|
ZHU M , LIU Q , LIU X , et al. Fault detection method for avionics based on LMKL and OC-ELM[J]. Systems Engineering and Electronics, 2020, 42 (6): 1424- 1432.
|
3 |
WANG L , MA J G , SHI Y M . Dependence Rayleigh competing risks model with generalized censored data[J]. Journal of Systems Engineering and Electronics, 2020, 31 (4): 852- 858.
doi: 10.23919/JSEE.2020.000058
|
4 |
PERERIA F H , BEZERRA F E , OLIVA D , et al. Forecast model update based on a real-time data processing lambda architecture for estimating partial discharges in hydrogenerator[J]. Sensors, 2020, 20 (24): 1- 23.
doi: 10.1109/JSEN.2020.3036003
|
5 |
WOJENSKI A , POZNIAK K T , LINCZUK P , et al. Data quality monitoring considerations for implementation in high performance raw signal processing real-time systems with use in tokamak facilities[J]. Journal of Fusion Energy, 2022, 39 (5): 221- 229.
|
6 |
王庆锋, 刘家赫, 刘晓金. 数据驱动的旋转设备性能退化趋势预测方法[J]. 计算机集成制造系统, 2022, 28 (3): 724- 734.
|
|
WANG Q F , LIU J H , LIU X J . A data-driven performance degradation trend prediction method for rotating equipment[J]. Computer Integrated Manufacturing System, 2022, 28 (3): 724- 734.
|
7 |
张保山, 张琳, 张搏, 等. 基于故障风险标尺的复杂装备健康状态分类模型[J]. 系统工程与电子技术, 2020, 42 (2): 489- 496.
|
|
ZHANG B S , ZHANG L , ZHANG B , et al. Equipment health classification model based on failure risk scale[J]. Systems Engineering and Electronics, 2020, 42 (2): 489- 496.
|
8 |
张全德, 陈果, 林桐. 基于自组织神经网络的滚动轴承状态评估方法[J]. 中国机械工程, 2017, 28 (5): 550- 558.
doi: 10.3969/j.issn.1004-132X.2017.05.008
|
|
ZHANG Q D , CHEN G , LIN T . Rolling bearing condition assessment method based on self-organizing neural network[J]. China Mechanical Engineering, 2017, 28 (5): 550- 558.
doi: 10.3969/j.issn.1004-132X.2017.05.008
|
9 |
MOHAMMED A , MARK W J , XIE X H , et al. Time cluster: dimension reduction applied to temporal data for visual analytics[J]. The Visual Computer, 2019, 35, 1013- 1026.
doi: 10.1007/s00371-019-01673-y
|
10 |
MARC H , SIEGFRIED H , MARCO L . Optimal dimension reduction for high-dimensional and functional times series[J]. Statistical Inference Stochastic Processes, 2018, 21 (2): 385- 398.
doi: 10.1007/s11203-018-9172-1
|
11 |
JONAS I , GEORGE D , ULRICH P . Predicting spatio-temporal time series using dimension reduced local states[J]. Journal of Nonlinear Science, 2020, 30, 713- 735.
doi: 10.1007/s00332-019-09588-7
|
12 |
IQBAL R , MANIAK T , DOCTOR F , et al. Fault detection and isolation in industrial processes using deep learning approaches[J]. IEEE Trans.on Industrial Informatics, 2019, 15 (5): 3077- 3084.
doi: 10.1109/TII.2019.2902274
|
13 |
申富饶, 竺涛. 快速与增量式数据降维算法研究[M]. 北京: 科学出版社, 2018.
|
|
SHEN F R , ZHU T . Research on fast and incremental data dimensionality reduction algorithms[M]. Beijing: Science Press, 2018.
|
14 |
DING X X , HE Q B . Energy-fluctuated multiscale feature learning with deep convent for intelligent spindle bearing fault disgnosis[J]. IEEE Trans.on Instrumentation and Measurement, 2017, 66 (8): 1926- 1935.
doi: 10.1109/TIM.2017.2674738
|
15 |
杨俊闯, 赵超. k-means聚类算法研究综述[J]. 计算机工程与应用, 2019, 55 (23): 7- 14.
doi: 10.3778/j.issn.1002-8331.1908-0347
|
|
YANG J C , ZHAO C . Overview of k-means clustering algorithm[J]. Computer Engineering and Applications, 2019, 55 (23): 7- 14.
doi: 10.3778/j.issn.1002-8331.1908-0347
|
16 |
YU H , JIA Q Q , WANG N , et al. A data-driven modeling strategy for smart grid power quality coupling assessment based on time series pattern matching[J]. Mathematical Problems in Engineering, 2018, 38 (5): 1001- 1012.
|
17 |
LI Z X , ZHANG F M , NIE F P , et al. Speed up dynamic time warping of multivariate time series[J]. Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology, 2019, 36 (3): 2593- 2603.
|
18 |
ZHANG K , GUI L , YIN Y . A multivariate grey incidence model for different scale data based on spatial pyramid pooling[J]. Journal of Systems Engineering and Electronics, 2020, 31 (4): 770- 779.
doi: 10.23919/JSEE.2020.000052
|
19 |
SUN J Y , HUANG W P , ZHANG D Y , et al. A novel similarity measure model for multivariate time series based on LMNN and DTW[J]. Neural Processing Letters, 2016, 18 (5): 861- 843.
|
20 |
张泽斌, 张鹏飞, 李瑞珍. 基于自组织映射的高维优化参变量相关性研究[J]. 西北工业大学学报, 2020, 38 (3): 677- 684.
doi: 10.3969/j.issn.1000-2758.2020.03.028
|
|
ZHANG Z B , ZHANG P F , LI R Z . High dimensional optimization parameter correlation based on self-organizing mapping[J]. Journal of Northwestern Polytechnical University, 2020, 38 (3): 677- 684.
doi: 10.3969/j.issn.1000-2758.2020.03.028
|
21 |
MARINO L M P, TENORIO D A, CARVALHO F. A new batch SOM algorithm for relational data with weighted medoids[C]// Proc. of the International Joint Conference on Neural Networks, 2020: 19-24.
|
22 |
刘小峰, 冯伟, 柏林. 考虑退化轨迹差异性与相似性的轴承RUL预测[J]. 控制与决策, 2021, 36 (11): 2833- 2840.
|
|
LIU X F , FENG W , BO L . Prediction of bearing remaining useful life involving the difference and similarity of degradation trajectories[J]. Control and Decision, 2021, 36 (11): 2833- 2840.
|
23 |
唐朝辉, 朱清新. 基于自编码器及超图学习的多标签特征提取[J]. 自动化学报, 2016, 42 (7): 1014- 1021.
|
|
TANG C H , ZHU Q X . Multi-label feature selection with autoencoders and hypergraph learning[J]. Acta Automatica Sinica, 2016, 42 (7): 1014- 1021.
|
24 |
杨帅. 基于堆栈降噪自编码器和用户标签增强的混合的推荐算法研究[D]. 武汉: 武汉大学, 2019.
|
|
YANG S. Research on hybrid recommendation algorithm enhancement by stacked denosing autoencoder and users' labels[D]. Wuhan: Wuhan University, 2019.
|
25 |
CHEN J , TANG J Y , ZHU S G , et al. Application of deep stack autoencoder network in ship weight estimation[J]. Computer Engineering, 2019, 45 (5): 315- 320.
|
26 |
YANG Z , WEI C W . Prediction of equipment performance index based on improved chaotic lion swarm optimization-LSTM[J]. Soft Computing, 2020, 24 (13): 9441- 9465.
doi: 10.1007/s00500-019-04456-8
|
27 |
柏林, 闫康, 刘小峰. 面向轴承寿命预测的特征评估预模型优化[J]. 振动、测试与诊断, 2020, 40 (2): 361- 366.
|
|
BO L , YAN K , LIU X F . Feature evaluation and model optimization for bearing life prediction[J]. Journal of Vibration, Measurement & Diagnosis, 2020, 40 (2): 361- 366.
|
28 |
蔡忠义, 王泽洲, 张晓丰, 等. 隐含非线性退化设备的剩余寿命在线预测方法[J]. 系统工程与电子技术, 2020, 42 (6): 1410- 1416.
|
|
CAI Z Y , WANG Z Z , ZHANG X F , et al. Online prediction method of remaining useful lifetime for implicit nonlinear degradation equipment[J]. Systems Engineering and Electronics, 2020, 42 (6): 1410- 1416.
|
29 |
LE S K , FOULADIRAD M , BARROS A . Remaining useful lifetime estimation and noisy Gamma deterioration process[J]. Reliability Engineering and System Safety, 2016, 149, 76- 87.
doi: 10.1016/j.ress.2015.12.016
|
30 |
焦瑞华. 面向复杂工程系统的故障预测方法研究[D]. 北京: 北京科技大学, 2020.
|
|
JIAO R H. Prognostics method study of complex engineering system[D]. Beijing: University of Science and Techndogy Beijing, 2020.
|
31 |
王泽洲, 陈云翔, 蔡忠义. 考虑非线性退化与随机失效阈值的剩余寿命预测[J]. 国防科技大学学报, 2020, 42 (2): 177- 185.
|
|
WANG Z Z , CHEN Y X , CAI Z Y . Remaining useful lifetime prediction based on nonlinear degradation processes with random failure threshold[J]. Journal of National University of Defense Technology, 2020, 42 (2): 177- 185.
|