1 |
CHEN Y , WANG J , JIN F J . Robustness of China's air transport network from 1975 to 2017[J]. Physica A: Statistical Mechanics and its Applications, 2020, 53 (9): 128- 141.
|
2 |
YANG H H , AN S . Critical nodes identify-cation in complex networks[J]. Symmetry, 2020, 12 (1): 123- 136.
doi: 10.3390/sym12010123
|
3 |
GAYDOS D A , PETRASOVA A , COBB R C , et al. Forecasting and control of emerging infectious forest disease through participatory modelling[J]. Philosophical Trans.of the Royal Society B, 2019, 374 (1776): 283- 291.
|
4 |
ZHANG X , ZHAN C J , CHI K T . Modeling the dynamics of cascading failures in power systems[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2017, 7 (2): 192- 204.
doi: 10.1109/JETCAS.2017.2671354
|
5 |
CAI Q , ALAM S , DUONG V . On robustness paradox in air traffic networks[J]. IEEE Trans.on Network Science and Engineering, 2020, 7 (4): 3087- 3099.
doi: 10.1109/TNSE.2020.3015728
|
6 |
LORDAN O , SALLAN M J , SIMO P . Robustness of the air transport network[J]. Transportation Research: Part E, 2014, 68 (9): 155- 163.
|
7 |
闫玲玲, 陈增强, 张青. 基于度和聚类系数的中国航空网络重要性节点分析[J]. 智能系统学报, 2016, 11 (5): 586- 593.
|
|
YAN L L , CHEN Z Q , ZHANG Q . Analysis of key nodes in China's aviation network based on the degree centrality indicator and clustering coefficient[J]. CAAI Trans.on Intelligent Systems, 2016, 11 (5): 586- 593.
|
8 |
PRADHAN P , ANGELIYA C U , JALAN S . Principal eigenvector localization and centrality in networks: revisited[J]. Physica A: Statistical Mechanics and its Applications, 2020, 55 (4): 124- 139.
|
9 |
SALAVATI C , ABDOLLAHPOURI A , MANBARI Z . Ranking nodes in complex networks based on local structure and improving closeness centrality[J]. Neurocomputing, 2018, 336, 36- 45.
|
10 |
TANG J J , LI Z T , GAO F , et al. Identifying critical metro stations in multiplex network based on D-S evidence theory[J]. Physica A: Statistical Mechanics and its Applications, 2021, 57 (4): 74- 85.
|
11 |
KOTSIANTIS S B . Decision trees: a recent overview[J]. Artificial Intelligence Review, 2013, 39 (4): 261- 283.
doi: 10.1007/s10462-011-9272-4
|
12 |
丁世飞, 齐丙娟, 谭红艳. 支持向量机理论与算法研究综述[J]. 电子科技大学学报, 2011, 40 (1): 2- 10.
|
|
DING S F , QI B J , TAN H Y . An overview on theory and algorithm of support vector machines[J]. Journal of University of Electronic Science and Technology of China, 2011, 40 (1): 2- 10.
|
13 |
李佳威, 吴明功, 温祥西, 等. 基于最小连通支配集的复杂网络关键节点与连边识别方法[J]. 系统工程与电子技术, 2019, 41 (11): 2541- 2549.
|
|
LI J W , WU M G , WEN X X , et al. Identifying key nodes and edges of complex networks based on the minimum connected dominating set[J]. Systems Engineering and Electronics, 2019, 41 (11): 2541- 2549.
|
14 |
INUWADUTSE I , LIPTROTT M , KORKONTZELOS I . Detection of spam-posting accounts on Twitter[J]. Neurocomputing, 2018, 315 (11): 496- 511.
|
15 |
ZHENG X H , ZENG Z P , CHEN Z Y , et al. Detecting spammers on social networks[J]. Neurocomputing, 2015, 159 (7): 27- 34.
|
16 |
CAI J , LUO J W , WANG S L , et al. Feature selection in machine learning: a new perspective[J]. Neurocomputing, 2018, 300 (7): 70- 79.
|
17 |
朱凯利, 朱海龙, 刘靖宇, 等. 基于图卷积神经网络的交通流量预测[J]. 智能计算机与应用, 2019, 9 (6): 168- 177.
doi: 10.3969/j.issn.2095-2163.2019.06.035
|
|
ZHU K L , ZHU H L , LIU J Y , et al. Traffic flow prediction based on graph convolutional neural network[J]. Intelligent Computer and Applications, 2019, 9 (6): 168- 177.
doi: 10.3969/j.issn.2095-2163.2019.06.035
|
18 |
刘晓玲, 刘柏嵩, 王洋洋. 一种基于图卷积网络的文本多标签学习方法[J]. 小型微型计算机系统, 2021, 42 (3): 531- 535.
doi: 10.3969/j.issn.1000-1220.2021.03.014
|
|
LIU X L , LIU B S , WANG Y Y . Text multi-label learning method based on graph convolutional networks[J]. Journal of Chinese Computer Systems, 2021, 42 (3): 531- 535.
doi: 10.3969/j.issn.1000-1220.2021.03.014
|
19 |
YU E Y , WANG Y P , FU Y , et al. Identifying critical nodes in complex networks via graph convolutional networks[J]. Knowledge Based Systems, 2020, 198 (21): 893- 899.
|
20 |
WU Z H , PAN S R , CHEN F W , et al. A compre hensive survey on graph neural networks[J]. IEEE Trans.on Neural Networks and Learning Systems, 2021, 32 (1): 4- 24.
doi: 10.1109/TNNLS.2020.2978386
|
21 |
KIPF T, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. [2021-05-25]. https://arxiv.org/abs/1609.02907v3, 2016-09-09/2021-05-25.
|
22 |
VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. [2021-05-25]. https://arxiv.org/abs/1710.10903, 2017-10-30/2021-05-25.
|
23 |
WANG Z , WANG B H , XU N . SAR ship detection in complex background based on multi-feature fusion and non-local channel attention mechanism[J]. International Journal of Remote Sensing, 2021, 42 (19): 7519- 7550.
doi: 10.1080/01431161.2021.1963003
|
24 |
HAMILTON W L , YING R , LESKOVEC J . Inductive representation learning on large graphs[J]. Advances in Neural Information Process Systems, 2017, 1706 (2216): 1024- 1034.
|
25 |
ZHAO G H , JIA P , ZHOU A , et al. InfGCN: identifying influential nodes in complex networks with graph convolutional networks[J]. Neurocomputing, 2020, 414 (11): 18- 26.
|
26 |
LI Q M, HAN Z C, WANG X M. Deeper insights into graph convolutional networks for semi-supervised learning[C]//Proc. of the AAAI Conference on Artificial Intelligence, 2018: 124-137.
|
27 |
CHEN D, LIN Y K, LI W, et al. Measuring and relieving the over-smoothing problem for graph neural networks from the topological view[C]//Proc. of the AAAI Conference on Artificial Intelligence, 2020: 3438-3445.
|
28 |
CARUANA R . Multitask learning[J]. Autonomous Agents and Multi-Agent Systems, 1998, 27 (1): 95- 133.
|
29 |
VANDENHENDE S, GEORGOULIS S, VAN GANSBEKE W, et al. Multi-task learning for dense prediction tasks: a survey[EB/OL]. [2021-05-25]. https://arxiv.org/abs/2004.13379.
|
30 |
张钰, 刘建伟, 左信. 多任务学习[J]. 计算机学报, 2020, 43 (7): 1340- 1378.
|
|
ZHANG Y , LIU J W , ZUO X . Survey of multi task learning[J]. Chinese Journal of Computers, 2020, 43 (7): 1340- 1378.
|
31 |
CHEN Z, BADRINARAYANAN V, LEE C Y, et al. Grad-norm: gradient normalization for adaptive loss balancing in deep multi task networks[C]//Proc. of the International Conference on Machine Learning, 2018: 794-803.
|
32 |
RIBEIRO L F R, SAVERSE P H P, FIGUEIREDO D R. Struc2vec: learning node representations from structural identity[C]// Proc. of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017: 385-394.
|
33 |
WU J, HE J R, XU J J. DEMO-Net: degree-specific graph neural networks for node and graph classification[C]//Proc. of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019: 406-415.
|
34 |
WU S M, FLACH P, FERRI C. An improved model selection heuristic for AUC[C]//Proc. of the European Conference on Machine Learning, 2007: 478-489.
|
35 |
HAND D J . Evaluating diagnostic tests: the area under the ROC curve and the balance of errors[J]. Statistics in Medicine, 2010, 29 (14): 1502- 1510.
|
36 |
KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL]. [2021-05-25]. https://arxiv.org/abs/1412.6980, 2014-12-22/2021-05-25.
|
37 |
SRIVASTAVA N , HINTON G , KRIZHE-VSKY A , et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15 (1): 1929- 1958.
|