系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (7): 2319-2328.doi: 10.12305/j.issn.1001-506X.2022.07.29
康颖1,2, 赵治华1,2, 吴灏1,2,*, 李亚星1,2, 孟进1,2
收稿日期:
2021-05-21
出版日期:
2022-06-22
发布日期:
2022-06-28
通讯作者:
吴灏
作者简介:
康颖 (1994—), 男, 博士研究生, 主要研究方向为通信信号处理|赵治华 (1962—), 男, 教授, 博士, 主要研究方向为电磁兼容、电磁领域的分析与计算、自适应干扰对消|吴灏 (1988—), 男, 讲师, 博士, 主要研究方向为通信信号处理、波形设计|李亚星 (1988—), 男, 讲师, 博士, 主要研究方向为通信信号处理|孟进 (1977—), 男, 研究员, 博士, 主要研究方向为电磁干扰与防护
基金资助:
Ying KANG1,2, Zhihua ZHAO1,2, Hao WU1,2,*, Yaxing LI1,2, Jin MENG1,2
Received:
2021-05-21
Online:
2022-06-22
Published:
2022-06-28
Contact:
Hao WU
摘要:
针对复杂电子对抗场景中的非理想信道环境, 该文提出了一种基于深度学习的异常检测(anomaly detection, AD)方法。首先, 分析了利用时频同相/正交(in-phase/quadrature, I/Q)采样数据进行AD的可行性; 然后, 设计了深度学习网络架构, 并提出基于深度支持向量描述(deep support vector data description, Deep SVDD)和调制识别的AD方法。仿真及实验结果表明: 相比于经典的单分类检测算法, 该方法检测性能和实时性明显提升, 且在非理想信道环境下表现鲁棒。该方法已在某型号项目原理样机上得到验证, 具有很高应用价值。
中图分类号:
康颖, 赵治华, 吴灏, 李亚星, 孟进. 基于Deep SVDD的通信信号异常检测方法[J]. 系统工程与电子技术, 2022, 44(7): 2319-2328.
Ying KANG, Zhihua ZHAO, Hao WU, Yaxing LI, Jin MENG. Deep SVDD-based anomaly detection method for communication signals[J]. Systems Engineering and Electronics, 2022, 44(7): 2319-2328.
1 | 吴灏, 周亮, 李亚星, 等. 基于卷积神经网络和稀疏滤波的调制识别方法[J]. 系统工程与电子技术, 2019, 41 (9): 2114- 2121. |
WU H , ZHOU L , LI Y S . Modulation classification based on convolutional neural network and sparse filtering[J]. Systems Engineering and Electronics, 2019, 41 (9): 2114- 2121. | |
2 |
刘义, 赵晶, 刘佳楠, 等. 基于作战效能的战场电磁环境分级描述方法[J]. 系统工程与电子技术, 2011, 33 (5): 1059- 1062.
doi: 10.3969/j.issn.1001-506X.2011.05.20 |
LIU Y , ZHAO J , LIU J N , et al. Novel battlefield electromagnetic environment classification method based on combat efficacy of weapon systems[J]. Systems Engineering and Electronics, 2011, 33 (5): 1059- 1062.
doi: 10.3969/j.issn.1001-506X.2011.05.20 |
|
3 | CHANDOLA V , BANERJEE A , KUMAR V , et al. Anomaly detection: a survey[J]. ACM Computing Surveys, 2009, 41 (3): 1- 58. |
4 | WANG B , LIU K R . Advances in cognitive radio networks: a survey[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 5 (1): 5- 23. |
5 |
TANDRA R , SAHAI A . SNR walls for signal detection[J]. IEEE Journal of Selected Topics in Signal Processing, 2008, 2 (1): 4- 17.
doi: 10.1109/JSTSP.2007.914879 |
6 |
TURIN G L . An introduction to matched filters[J]. IRE Trans.on Information Theory, 1960, 6 (3): 311- 329.
doi: 10.1109/TIT.1960.1057571 |
7 | YE Z, GROSSPIETSCH J, MEMIK G. Spectrum sensing using cyclostationary spectrum density for cognitive radios[C]//Proc. of the IEEE Workshop on Signal Processing Systems, 2007. |
8 |
LECUN Y , BENGIO Y , HINTON G . Deep learning[J]. Nature, 2015, 521 (7553): 436- 444.
doi: 10.1038/nature14539 |
9 | HINTON G E , OSINDERO S , TEH Y W . A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, (521): 436- 444. |
10 | MINAEE S , KALCHBRENNER N , CAMBRIA E , et al. Deep learning-based text classification: a comprehensive review[J]. ACM Computing Surveys, 2021, 54 (3): 1- 40. |
11 | MINAEE S, BOYKOV Y Y, PORIKLI F, et al. Image segmentation using deep learning: a survey[EB/OL]. [2022-05-25]. https://arxiv.org/abs/2001.05566. |
12 | O'SHEA T J, CLANCY T C, MCGWIER R W. Recurrent neural radio anomaly detection[EB/OL]. [2022-05-25]. https://arxiv.org/abs/1611.00301. |
13 | PELLACO L, SINGH N, JALDEN J. Spectrum prediction and interference detection for satellite communications[C]//Proc. of the 37th International Communications Satellite Systems Conference, 2019. |
14 | CONN M A, JOSYULA D. Radio frequency classification and anomaly detection using convolutional neural networks[C]//Proc. of the IEEE Radar Conference, 2019. |
15 | LI Z J, XIAO Z J, WANG B L, et al. Scaling deep learning models for spectrum anomaly detection[C]//Proc. of the 20th ACM International Symposium on Mobile Ad Hoc Networking and Computing, 2019: 291-300. |
16 |
ZHOU X H , XIONG J , ZHANG X C , et al. A radio anomaly detection algorithm based on modified generative adversarial network[J]. IEEE Wireless Communications Letters, 2021, 10 (7): 1552- 1556.
doi: 10.1109/LWC.2021.3074135 |
17 | ZHANG L, HUANG C X, TANG H, et al. DTV radio spectrum anomaly detection based on an improved GAN[C]//Proc. of the 33rd General Assembly and Scientific Symposium of the International Union of Radio Science, 2020. |
18 | YOKKAMPON U, CHUMKAMON S, MOWSHOWITZ A, et al. Anomaly detection using variational autoencoder with spectrum analysis for time series data[C]//Proc. of the 9th International Conference on Informatics, Electronics & Vision, 2020. |
19 | TOMA A, KRAYANI A, MARCENARO L, et al. Deep learning for spectrum anomaly detection in cognitive mmWave radios[C]//Proc. of the IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, 2020. |
20 | GHANNEY Y, AJIB W. Radio frequency interference detection using deep learning[C]//Proc. of the IEEE 91st Vehicular Technology Conference, 2020. |
21 | XU J, TIAN Y, YUAN S, et al. Noise attention based spectrum anomaly detection method for unauthorized bands[EB/OL]. [2022-05-25]. https://arxiv.org/abs/2104.08517. |
22 |
RAJENDRAN S , MEERT W , LENDERS V , et al. Unsupervised wireless spectrum anomaly detection with interpretable features[J]. IEEE Trans.on Cognitive Communications Networking, 2019, 5 (3): 637- 647.
doi: 10.1109/TCCN.2019.2911524 |
23 | RAJENDRAN S , LENDERS V , MEERT W , et al. Crowdsourced wireless spectrum anomaly detection[J]. IEEE Trans.on Cognitive Communications and Networking, 2019, 6 (2): 694- 703. |
24 |
TOMA A , KRAYANI A , FARRUKH M , et al. AI-based abnormality detection at the PHY-layer of cognitive radio by learning generative models[J]. IEEE Trans.on Cognitive Communications and Networking, 2020, 6 (1): 21- 34.
doi: 10.1109/TCCN.2020.2970693 |
25 |
SCHEIRER W J , ROCHA A D R , SAPKOTA A , et al. Toward open set recognition[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2013, 35 (7): 1757- 1772.
doi: 10.1109/TPAMI.2012.256 |
26 |
WANG Y , LIU M , YANG J , et al. Data-driven deep learning for automatic modulation recognition in cognitive radios[J]. IEEE Trans.on Vehicular Technology, 2019, 68 (4): 4074- 4077.
doi: 10.1109/TVT.2019.2900460 |
27 | RUFF L, VANDERMEULEN R, GOERNITZ N, et al. Deep one-class classification[C]//Proc. of the International Conference on Machine Learning, 2018: 4393-4402. |
28 | 周鑫, 何晓新, 郑昌文. 基于图像深度学习的无线电信号识别[J]. 通信学报, 2019, 40 (7): 114- 125. |
ZHOU X , HE X X , ZHENG C W . Radio signal recognition based on image deep learning[J]. Journal on Communications, 2019, 40 (7): 114- 125. | |
29 | O'SHEA T J, CORGAN J, CLANCY T C. Convolutional radio modulation recognition networks[C]//Proc. of the International Conference on Engineering Applications of Neural Networks, 2016: 213-226. |
30 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. |
31 | Analog Devices. AD9361[EB/OL]. [2022-05-25]. www.analog.com/en/products/ad9361.html. |
32 | KINGMA D P, BA J. ADAM: a method for stochastic optimization[EB/OL]. [2022-05-25]. https://arxiv.org/abs/1412.6980. |
33 | CHALAPATHY R, MENON A K, CHAWLA S. Anomaly detection using one-class neural networks[EB/OL]. [2022-05-25]. https://arxiv.org/abs/1802.06360. |
34 | LIU F T, TING K M, ZHOU Z H. Isolation forest[C]//Proc. of the IEEE 8th International Conference on Data Mining, 2008: 413-422. |
[1] | 秦博伟, 蒋磊, 许华, 齐子森. 基于残差生成对抗网络的调制识别算法[J]. 系统工程与电子技术, 2022, 44(6): 2019-2026. |
[2] | 邵凯, 朱苗苗, 王光宇. 基于生成对抗与卷积神经网络的调制识别方法[J]. 系统工程与电子技术, 2022, 44(3): 1036-1043. |
[3] | 史蕴豪, 许华, 郑万泽, 刘英辉. 基于集成学习与特征降维的小样本调制识别方法[J]. 系统工程与电子技术, 2021, 43(4): 1099-1109. |
[4] | 刘凯, 张斌, 黄青华. 基于TCNN-BiLSTM网络的调制识别算法[J]. 系统工程与电子技术, 2020, 42(8): 1841-1849. |
[5] | 刘凯, 赵梦伟, 黄青华. 基于近似熵的Multi-h CPM调制识别算法[J]. 系统工程与电子技术, 2020, 42(3): 698-703. |
[6] | 李晨, 杨俊安, 刘辉. 基于信息熵和GA-ELM的调制识别算法[J]. 系统工程与电子技术, 2020, 42(1): 223-229. |
[7] | 吴灏, 周亮, 李亚星, 郭宇, 孟进. 基于卷积神经网络和稀疏滤波的调制识别方法[J]. 系统工程与电子技术, 2019, 41(9): 2114-2121. |
[8] | 张一迪, 王培志, 陆起涌, 张建秋. 异常数据恒虚警检测的非参数方法[J]. 系统工程与电子技术, 2019, 41(5): 964-971. |
[9] | 郝云飞, 刘章孟, 郭福成, 张敏. 基于生成对抗网络的信号调制方式的开集识别[J]. 系统工程与电子技术, 2019, 41(11): 2619-2624. |
[10] | 郭鹏程, 刘峥, 罗丁利. 基于两次异常检测的雷达HRRP杂波稳健目标识别方法[J]. 系统工程与电子技术, 2019, 41(10): 2221-2226. |
[11] | 谭晓衡, 褚国星, 张雪静, 杨扬. 基于高阶累积量和小波变换的调制识别算法[J]. 系统工程与电子技术, 2018, 40(1): 171-177. |
[12] | 付俊强, 李蓉, 赵成林, 李斌. 基于贝叶斯序贯推理的自适应调制识别算法[J]. 系统工程与电子技术, 2015, 37(12): 2860-2864. |
[13] | 靳晓艳, 周希元. 一种最大似然调制识别的快速算法[J]. Journal of Systems Engineering and Electronics, 2013, 35(3): 615-618. |
[14] | 杨发权, 李 赞, 李红艳, 郝本建, 潘忠显. 基于蜂群算法和神经网络的通信调制识别方法[J]. 系统工程与电子技术, 2013, 35(10): 2186-2191. |
[15] | 李一兵, 葛娟, 林云. 基于熵特征和支持向量机的调制识别方法[J]. Journal of Systems Engineering and Electronics, 2012, 34(8): 1691-1695. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||