1 |
MI X J , LV T X , TIAN Y , et al. Multi-sensor data fusion based on soft likelihood functions and OWA aggregation and its application in target recognition system[J]. ISA Transactions, 2021, 112, 137- 149.
doi: 10.1016/j.isatra.2020.12.009
|
2 |
GONG Y M , MA Z Y , WANG M J , et al. A new multi-sensor fusion target recognition method based on complementarity ana-lysis and neutrosophic set[J]. Symmetry, 2020, 12 (9): 1435.
doi: 10.3390/sym12091435
|
3 |
赵照, 吴晓锋. 基于多地并行融合的多传感器目标识别信息融合方法[J]. 指挥控制与仿真, 2020, 42 (2): 23- 27.
doi: 10.3969/j.issn.1673-3819.2020.02.005
|
|
ZHAO Z , WU X F . Multi-sensor target recognition information fusion method based on multi-location parallel fusion[J]. Command Control and Simulation, 2020, 42 (2): 23- 27.
doi: 10.3969/j.issn.1673-3819.2020.02.005
|
4 |
LI J , YANG X Z , ZHOU L . Multi-sensor target recognition based-on multi-period improved DS evidence fusion method[J]. Journal of Nanoelectronics and Optoelectronics, 2018, 13 (5): 758- 767.
doi: 10.1166/jno.2018.2325
|
5 |
ZENG H , YANG B , WANG X Q , et al. RGB-D object recognition using multi-modal deep neural network and DS evidence theory[J]. Sensors, 2019, 19 (3): 539.
doi: 10.3390/s19030539
|
6 |
DUBOIS D , PRADE H . Representation and combination of uncertainty with belief functions and possibility measures[J]. Computational Intelligence, 2010, 4 (3): 244- 264.
|
7 |
LEFEVRE E , COLOT O , VANNOORENBERGHE P . Belief function combination and conflict management[J]. Information Fusion, 2002, 3 (2): 149- 162.
doi: 10.1016/S1566-2535(02)00053-2
|
8 |
YAGER R R . On the aggregation of prioritized belief structure[J]. IEEE Trans.on System, Man, and Cybernetics-Part A: Systems and Humans, 1996, 26 (6): 708- 719.
doi: 10.1109/3468.541331
|
9 |
YAGER R R . On the Dempster-Shafer framework and new combination rules[J]. Information Sciences, 1987, 41 (2): 93- 137.
doi: 10.1016/0020-0255(87)90007-7
|
10 |
孙全, 叶秀清, 顾伟康. 一种新的基于证据理论的合成公式[J]. 电子学报, 2000, 28 (8): 117- 119.
doi: 10.3321/j.issn:0372-2112.2000.08.036
|
|
SUN Q , YE X Q , GU W K . A new synthetic formula based on evidence theory[J]. Acta Electronica Sinica, 2000, 28 (8): 117- 119.
doi: 10.3321/j.issn:0372-2112.2000.08.036
|
11 |
HAENNI R , LEHMANN N . Resource bounded and anytime approximation of belief function computations[J]. International Journal of Approximate Reasoning, 2002, 31 (1): 103- 154.
|
12 |
LIU W R . Analyzing the degree of conflict among belief functions[J]. Artificial Intelligence, 2006, 170 (11): 909- 924.
doi: 10.1016/j.artint.2006.05.002
|
13 |
MURPHY C . Combining belief functions when evidence conflicts[J]. Decision Support Systems, 2000, 29 (1): 1- 9.
doi: 10.1016/S0167-9236(99)00084-6
|
14 |
DENG Y , SHI W K . Combining belief functions based on distance of evidence[J]. Decision Support Systems, 2004, 38 (3): 489- 493.
doi: 10.1016/j.dss.2004.04.015
|
15 |
邓勇, 施文康, 朱振福. 一种有效处理冲突证据的组合方法[J]. 红外与毫米波学报, 2004, 23 (1): 27- 32.
doi: 10.3321/j.issn:1001-9014.2004.01.006
|
|
DENG Y , SHI W K , ZHU Z F . A combined method to effectively deal with conflicting evidence[J]. Journal of Infrared and Millimeter Waves, 2004, 23 (1): 27- 32.
doi: 10.3321/j.issn:1001-9014.2004.01.006
|
16 |
岳超源. 决策理论与方法[M]. 北京: 科学出版社, 2019.
|
|
YUE C Y . Decision theory and method[M]. Beijing: Science Press, 2019.
|
17 |
JUAN G , GAN J , WANG C X . The investment model of aviation industry VCGF based on AHP analysis of computer simulation[J]. Journal of Physics: Conference Series, 2020, 1578 (1): 012081.
doi: 10.1088/1742-6596/1578/1/012081
|
18 |
张欢, 陆见光, 唐向红. 面向冲突证据的改进DS证据理论算法[J]. 北京航空航天大学学报, 2020, 46 (3): 616- 623.
|
|
ZHANG H , LU J G , TANG X H . Improved DS evidence theory algorithm for conflict evidence[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46 (3): 616- 623.
|
19 |
尹东亮, 黄晓颖, 吴艳杰. 基于云模型和改进D-S证据理论的目标识别决策方法研究[J]. 航空学报, 2021, 42 (7): 247- 268.
|
|
YIN D L , HUANG X Y , WU Y J . Research on target recognition decision-making method based on cloud model and improved D-S evidence theory[J]. Journal of Aeronautics, 2021, 42 (7): 247- 268.
|
20 |
ZHAO J , XUE R , DONG Z N , et al. Evaluating the reliability of sources of evidence with a two-perspective approach in classification problems based on evidence theory[J]. Information Sciences, 2020, 507, 313- 338.
doi: 10.1016/j.ins.2019.08.033
|
21 |
FLORENTIN S , NASSIM A , YOUCEF C , et al. PCR5 and neutrosophic probability in target identification (revisited)[J]. Neutrosophic Sets and Systems, 2017, 16, 76- 79.
|