系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (7): 2175-2180.doi: 10.12305/j.issn.1001-506X.2022.07.13

• 传感器与信号处理 • 上一篇    下一篇

基于本征向量和Jousselme距离的高冲突证据融合方法

刘康*, 何明浩, 韩俊, 王庚   

  1. 空军预警学院, 湖北 武汉 430019
  • 收稿日期:2021-03-11 出版日期:2022-06-22 发布日期:2022-06-28
  • 通讯作者: 刘康
  • 作者简介:刘康(1994—), 男, 博士研究生, 主要研究方向为多传感器融合、雷达辐射源识别|何明浩 (1963—), 男, 教授, 博士, 主要研究方向为雷达信号处理、电子对抗与电磁场|韩俊 (1983—), 男, 副教授, 博士, 主要研究方向为雷达信号处理、电子对抗|王庚 (1991—), 男, 博士研究生, 主要研究方向为阵列信号处理、稀疏阵列设计
  • 基金资助:
    军内重点科研项目(KJ20191A050339)

A high conflict evidence fusion method based on eigenvector and Jousselme distance

Kang LIU*, Minghao HE, Jun HAN, Geng WANG   

  1. Air Force Early Warning Academy, Wuhan 430019, China
  • Received:2021-03-11 Online:2022-06-22 Published:2022-06-28
  • Contact: Kang LIU

摘要:

针对传统Dempster-Shafer (D-S)理论无法有效融合高冲突证据的问题, 提出了基于本征向量和Jousselme距离的证据修改方法。首先, 由决策者结合主观经验根据原始证据的重要性给出判断矩阵, 并利用本征向量法解得主观权重。接着, 由原始证据间的Jousselme距离得到客观权重, 然后, 综合主客观权重对原始证据进行修改。最后, 对修改后的证据体使用D-S理论进行融合。仿真结果表明, 该方法在对高冲突证据进行融合时收敛速度快, 准确度高, 同时具备良好的适应能力, 很好地解决了高冲突证据的融合问题。

关键词: 多传感器融合, Dempster-Shafer证据理论, 本征向量法, Jousselme距离

Abstract:

Aiming at the problem that the traditional Dempster-Shafer (D-S) theory cannot effectively integrate highly conflict evidence, an evidence modification method based on eigenvector and Jousselme distance is proposed. First, the decision maker combines subjective experience to give a judgment matrix based on the relative importance of the original evidence and uses the eigenvector method to solve the subjective weight. Then calculate the Jousselme distance between the original evidence to obtain the objective weight and combine the subjective and objective weights to modify the original evidence. Finally, the D-S theory is used to fuse the revised evidence body. The simulation results show that the method has fast convergence speed and high accuracy when fusing highly conflict evidence, and at the same time has good adaptability, and it solves the fusion problem of heavy conflict evidence.

Key words: multi-sensor fusion, Dempster-Shafer (D-S) evidence theory, eigenvector method, Jousselme distance

中图分类号: