1 |
张贤达, 保铮. 通信信号处理[M]. 北京: 国防工业出版社, 2010.
|
|
ZHANG X D , BAO Z . Communication signal processing[M]. Beijing: National Defense Industry Press, 2010.
|
2 |
王永良. 空间谱估计理论与算法[M]. 北京: 清华大学出版社, 2004.
|
|
WANG Y L . Spatial spectrum estimation theory and algorithm[M]. Beijing: Tsinghua University Press, 2004.
|
3 |
闫锋刚, 刘秋晨, 邵多, 等. 基于谱分解的降阶求根MUSIC算法[J]. 电子与信息学报, 2017, 39 (10): 2421- 2427.
|
|
YAN F G , LIU Q C , SHAO D , et al. MUSIC algorithm based on spectrum decomposition to find roots with reduced order[J]. Journal of Electronics and Information Technology, 2017, 39 (10): 2421- 2427.
|
4 |
张小飞, 李建峰, 徐大专. 阵列信号处理及Matlab实现[M]. 北京: 电子工业出版社, 2019.
|
|
ZHANG X F , LI J F , XU D Z . Array signal processing and Matlab implementation[M]. Beijing: Publishing House of Electronics Industry, 2019.
|
5 |
CARDOSO J F . High-order contrasts for independent component analysis[J]. Neural Computation, 1999, 11 (1): 157- 192.
doi: 10.1162/089976699300016863
|
6 |
朱敏, 何培宇. 一种新的基于四阶累积量的DOA估计算法[J]. 四川大学学报(自然科学版), 2011, 48 (2): 343- 348.
doi: 10.3969/j.issn.0490-6756.2011.02.018
|
|
ZHU M , HE P Y . A new DOA estimation algorithm based on fourth-order cumulant[J]. Journal of Sichuan University (Natural Science Edition), 2011, 48 (2): 343- 348.
doi: 10.3969/j.issn.0490-6756.2011.02.018
|
7 |
CHEVALIER P , ALBERA L , FERREOL A , et al. On the virtual array concept for higher order array processing[J]. IEEE Trans.on Signal Processing, 2005, 53 (4): 1254- 1271.
doi: 10.1109/TSP.2005.843703
|
8 |
LIU C , YE Z F , ZHANG Y F . DOA estimation based on fourth-order cumulants with unknown mutual coupling[J]. Signal Processing, 2009, 89 (9): 1839- 1843.
doi: 10.1016/j.sigpro.2009.03.035
|
9 |
陈建, 王建勋. 基于高阶累积量虚拟阵列扩展的DOA估计[J]. 电子与信息学报, 2007, 29 (5): 1041- 1044.
|
|
CHEN J , WANG J X . DOA estimation of virtual array extension based on fourth-order cumulant[J]. Journal of Electronics & Information Technology, 2007, 29 (5): 1041- 1044.
|
10 |
SHI H P , LENG W , WANG A G , et al. Fast orthonormal propagator direction-finding algorithm based on fourth-order cumulants[J]. Applied Computational Electromagnetics Society Journal, 2015, 30 (6): 638- 644.
|
11 |
段慧芳, 赵宣植, 刘增力, 等. 基于四阶累积量的EM波达方向估计算法[J]. 电波科学学报, 2018, 33 (6): 122- 128.
|
|
DUAN H F , ZHAO X Z , LIU Z L , et al. Expectation maximization DOA estimation algorithm based on four-order cumulant[J]. Chinese Journal of Radio Science, 2018, 33 (6): 122- 128.
|
12 |
QIAN C , HUANG L , XIAO Y H , et al. Localization of cohe-rent signals without source number knowledge in unknown spatially correlated Gaussian noise[J]. Signal Processing, 2015, 111, 170- 178.
doi: 10.1016/j.sigpro.2014.12.005
|
13 |
齐栋, 唐敏, 刘成城, 等. 高斯色噪声下混合信号二维DOA估计方法[J]. 系统工程与电子技术, 2019, 41 (10): 2198- 2204.
doi: 10.3969/j.issn.1001-506X.2019.10.07
|
|
QI D , TANG M , LIU C C , et al. Two-dimensional DOA estimation method for mixed signals under Gaussian color noise[J]. Systems Engineering and Electronics, 2019, 41 (10): 2198- 2204.
doi: 10.3969/j.issn.1001-506X.2019.10.07
|
14 |
ZHANG G , LEUNG H , ZHANG Y Y . Gridless coherent DOA estimation based on fourth-order cumulants with Gaussian colored noise[J]. IET Radar Sonar & Navigation, 2020, 14 (5): 677- 685.
|
15 |
XUE B , FANG G , JI Y C . Efficient localization algorithm of mixed far-field and near-field sources using uniform circular array[J]. Progress in Electromagnetics Research M, 2016, 51 (4): 139- 146.
|
16 |
刁鸣, 吴小强, 李晓刚. 基于四阶累积量的测向方法研究[J]. 系统工程与电子技术, 2008, 30 (2): 226- 228.
|
|
DIAO M , WU X Q , LI X G . Study on DOA estimation based on fourth order cumulant[J]. Systems Engineering and Electronics, 2008, 30 (2): 226- 228.
|
17 |
郭业才, 韩金金, 王超. 基于四阶矩的单矢量水听器多声源定位算法[J]. 四川大学学报(自然科学版), 2018, 55 (4): 733- 738.
|
|
GUO Y C , HAN J J , WANG C . Multi-acoustic source localization algorithm based on four order moments for single vector hydrophone[J]. Journal of Sichuan University (Natural Science Edition), 2018, 55 (4): 733- 738.
|
18 |
SHI H P , MA N , GUAN Z W , et al. A fourth-order cumulant orthonormal propagator rooting method based on Toeplitz approximation[J]. EURASIP Journal on Wireless Communications and Networking, 2020, 193.
|
19 |
CAO S H , YE Z F , HU N , et al. DOA estimation based on fourth-order cumulants in the presence of sensor gain-phase errors[J]. Signal Processing, 2013, 93 (9): 2581- 2585.
doi: 10.1016/j.sigpro.2013.03.007
|
20 |
LING S Y , STROHMER T . Self-calibration and biconvex compressive sensing[J]. Inverse Problems, 2015, 31 (11)
doi: 10.1088/0266-5611/31/11/115002
|
21 |
LIU A F , LIAO G S , ZENG C , et al. An eigenstructure method for estimating DOA and sensor gain-phase errors[J]. Digital Signal Processing, 2018, 59 (12): 5944- 5956.
|