系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (7): 2125-2133.doi: 10.12305/j.issn.1001-506X.2022.07.07
李鹏飞, 卢海梁*, 韩涛, 党鹏举, 李一楠, 李浩, 吕容川
收稿日期:
2021-05-31
出版日期:
2022-06-22
发布日期:
2022-06-28
通讯作者:
卢海梁
作者简介:
李鹏飞(1989—), 男, 工程师, 硕士, 主要研究方向为被动微波遥感、无源探测、微波辐射计定标|卢海梁(1986—), 男, 高级工程师, 博士, 主要研究方向为被动微波辐射无源探测、被动微波遥感、射频干扰检测|韩涛(1980—), 男, 高级工程师, 硕士, 主要研究方向为高速数字采集、数字相关、数字信号处理|党鹏举(1988—), 男, 工程师, 硕士, 主要研究方向为全极化微波辐射计定标、被动遥感|李一楠(1985—), 男, 高级工程师, 博士研究生, 主要研究方向为被动微波遥感、综合孔径微波辐射计系统设计|李浩(1980—), 男, 研究员, 博士研究生, 主要研究方向为全极化微波辐射计、综合孔径微波辐射计系统设计|吕容川(1983—), 女, 研究员, 博士研究生, 主要研究方向为全极化微波辐射计、被动微波遥感、大气探测
基金资助:
Pengfei LI, Hailiang LU*, Tao HAN, Pengju DANG, Yinan LI, Hao LI, Rongchuan LYU
Received:
2021-05-31
Online:
2022-06-22
Published:
2022-06-28
Contact:
Hailiang LU
摘要:
为了缓解传统实孔径微波辐射计中性能指标与体积、重量间的矛盾, 解决综合孔径微波辐射计中高空间分辨率以系统结构、信号处理复杂度高为代价的难题, 提出了一种基于漏波天线的分布式微波辐射计系统。首先, 介绍了系统总体方案, 包括漏波天线和接收机方案; 其次, 详细分析了系统的关键指标——角分辨率和系统灵敏度, 并介绍了定标方案; 最后, 对系统进行建模并仿真分析。结果表明, 所设计的系统结构简单、复杂度较低、信号处理简单; 通过对系统进行建模仿真, 反演出的亮温值和真实亮温值误差很小。该系统可以作为一种新型的微波辐射计系统重点发展。
中图分类号:
李鹏飞, 卢海梁, 韩涛, 党鹏举, 李一楠, 李浩, 吕容川. 基于漏波天线的分布式微波辐射计[J]. 系统工程与电子技术, 2022, 44(7): 2125-2133.
Pengfei LI, Hailiang LU, Tao HAN, Pengju DANG, Yinan LI, Hao LI, Rongchuan LYU. Distributed microwave radiometer based on leaky wave antenna[J]. Systems Engineering and Electronics, 2022, 44(7): 2125-2133.
1 | ULABY F T , MOORE R K , FUNG A K . Microwave remote sensing: active and passive. Volume 1-Microwave remote sensing fundamentals and radiometry[M]. Workingham: Addison-Wesley Publishing Company, 1987. |
2 | 卢海梁, 王志强, 高超, 等. 基于被动干涉微波亮温图像的海面目标探测算法研究[J]. 电子与信息学报, 2020, 42 (3): 563- 572. |
LU H L , WANG Z Q , GAO C , et al. Research on the detection algorithm for sea surface targets based on passive interferometric microwave images (PIMI)[J]. Journal of Electronics and Information Technology, 2020, 42 (3): 563- 572. | |
3 |
PEARSON K , GOOD S , MERCHANT C J , et al. Sea surface temperature in global analyses: gains from the copernicus imaging microwave radiometer[J]. Remote Sensing, 2019, 11 (20): 2362.
doi: 10.3390/rs11202362 |
4 | ZHAO X , CHEN Y , KERN S , et al. Sea ice concentration derived from FY-3D MWRI and its accuracy assessment[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 60, 4300418. |
5 |
董晓龙, 吴季, 姜景山. 微波辐射计用于隐身目标探测的性能分析[J]. 系统工程与电子技术, 2001, 23 (3): 54- 57.
doi: 10.3321/j.issn:1001-506X.2001.03.016 |
DONG X L , WU J , JIANG J S . Performance analysis of stealth target detecting using microwave radiometer[J]. Systems Engineering and Electronics, 2001, 23 (3): 54- 57.
doi: 10.3321/j.issn:1001-506X.2001.03.016 |
|
6 | 黄建, 甘体国. 综合孔径干涉辐射计系统仿真[J]. 系统工程与电子技术, 2007, 29 (6): 5- 9. |
HUANG J , GAN T G . Simulation of synthetic aperture interferometric radiometer system[J]. Systems Engineering and Electronics, 2007, 29 (6): 5- 9. | |
7 |
AI W H , FENG M Y , CHEN G Y , et al. Research on sea surface temperature retrieval by the one-dimensional synthetic aperture microwave radiometer, 1D-SAMR[J]. Acta Oceanologica Sinica, 2020, 39 (5): 115- 122.
doi: 10.1007/s13131-020-1540-1 |
8 | 张祖荫, 林士杰. 微波辐射测量技术及应用[M]. 北京: 电子工业出版社, 1995. |
ZHANG Z Y , LIN S J . Microwave radiation measurement technology and application[M]. Beijing: Electronic Industry Press, 1995. | |
9 |
RUF C S , SWIFT C T , TANNER A B , et al. Interferometric synthetic aperture microwave radiometry for the remote sensing of the Earth[J]. IEEE Trans.on Geoscience and Remote Sensing, 1988, 26 (5): 597- 611.
doi: 10.1109/36.7685 |
10 |
MAGHRABY A , PARK H , CAMPS A , et al. Phase and baseline calibration for microwave interferometric radiometers using beacons[J]. IEEE Trans.on Geoscience and Remote Sensing, 2020, 58 (8): 5242- 5253.
doi: 10.1109/TGRS.2019.2949891 |
11 |
LIM S , CALOZ C , ITOH T . Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth[J]. IEEE Trans.on Microwave Theory and Techniques, 2004, 52 (12): 2678- 2690.
doi: 10.1109/TMTT.2004.838302 |
12 |
吴国成, 吴杰, 王光明, 等. 宽带低交叉极化超材料漏波天线的设计[J]. 雷达科学与技术, 2019, 17 (2): 225- 231.
doi: 10.3969/j.issn.1672-2337.2019.02.017 |
WU G C , WU J , WANG G M , et al. Design of metamaterial based leaky-wave antenna with wideband and low cross-polarization[J]. Radar Science and Technology, 2019, 17 (2): 225- 231.
doi: 10.3969/j.issn.1672-2337.2019.02.017 |
|
13 |
WU J W , JOU C F , WANG C J . A compact wideband leaky-wave antenna with etched slot elements and tapered structure[J]. IEEE Trans.on Antennas and Propagation, 2010, 58 (7): 2176- 2183.
doi: 10.1109/TAP.2010.2048847 |
14 |
LIU J H , LIANG J K . Gain enhancement of transversely-slotted substrate integrated waveguide leaky-wave antennas based on higher modes[J]. IEEE Trans.on Antennas and Propagation, 2021, 69 (8): 4423- 4438.
doi: 10.1109/TAP.2020.3048597 |
15 | TSUJI M , HARADA T , DEGUCHI H , et al. Leaky-wave antennas with low sidelobes based on stub-loaded ridge-rectangular waveguides[J]. ICE Trans.on Communications, 2006, 89 (2): 564- 569. |
16 | LI D T , ZHANG Y H , FENG X , et al. Multichannel radiometer frontend based on bandwidth synthetic technolog[J]. IEEE Trans.on Microwave Theory and Techniques, 2016, 65 (2): 632- 640. |
17 |
ALPARONE M , NUNZIATA F , ESTATICO C , et al. A multichannel data fusion method to enhance the spatial resolution of microwave radiometer measurements[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 59 (3): 2213- 2221.
doi: 10.1109/TGRS.2020.3005204 |
18 | KARABETSOS S , KOULOURAS G , CHARAMIS P , et al. Development of the RF front-end of a multi-channel microwave radiometer for internal body temperature measurements[J]. Journal of Physics Conference, 2015, 637 (1): 012010. |
19 | ZHANG W X , FAN X L , GAO L D , et al. Design of low-complexity IFRM-UMFB architecture for wideband digital recei-vers[J]. Circuits Systems and Signal Processing, 2020, 39 (4): 344- 362. |
20 |
LI Y D , HU W D , CHEN S , et al. Spatial resolution matching of microwave radiometer data with convolutional neural network[J]. Remote Sensing, 2019, 11 (20): 2432.
doi: 10.3390/rs11202432 |
21 |
HU T , ZHANG F , LI W , et al. Microwave radiometer data superresolution using image degradation and residual network[J]. IEEE Trans.on Geoscience and Remote Sensing, 2019, 57 (11): 8954- 8967.
doi: 10.1109/TGRS.2019.2923886 |
22 |
GOMEZ-TORNERO J L , MARTINEZ A D L T , REBENAQUE D C , et al. Design of tapered leaky-wave antennas in hybrid waveguide-planar technology for millimeter waveband applications[J]. IEEE Trans.on Antennas and Propagation, 2005, 53 (8): 2563- 2577.
doi: 10.1109/TAP.2005.850741 |
23 |
WANG L N , SHEN C Y , YUAN S , et al. Comparative analysis on detection performance with ground-based microwave radiometer and radiosonde[J]. International Journal of Embedded Systems, 2020, 13 (3): 341.
doi: 10.1504/IJES.2020.109975 |
24 |
HECKL M , FIX A , JIROUSEK M , et al. Measurement charac-teristics of an airborne microwave temperature profiler (MTP)[J]. Atmospheric Measurement Techniques, 2021, 14 (2): 1689- 1713.
doi: 10.5194/amt-14-1689-2021 |
25 |
AL-ANSARI K , GARCIA P , RIERA J M , et al. Calibration procedure of a microwave total-power radiometer[J]. IEEE Microwave and Wireless Components Letters, 2002, 12 (3): 93- 95.
doi: 10.1109/7260.989862 |
26 | 苏福顺, 吴琼之, 孙林, 等. 微波辐射计中异步量化技术的可行性分析[J]. 系统工程与电子技术, 2015, 37 (4): 763- 767. |
SU F S , WU Q Z , SUN L , et al. Feasibility analysis of asynchronous quantization technology in microwave radiometer[J]. Systems Engineering and Electronics, 2015, 37 (4): 763- 767. | |
27 |
COAKLEY K , SPLETT J , WALKER D , et al. Microwave radiometer instability due to infrequent calibration[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 3281- 3290.
doi: 10.1109/JSTARS.2020.2984004 |
28 | YE N , WALKER J P , WU X , et al. The soil moisture active passive experiments: validation of the SMAP products in Australia[J]. IEEE Trans.on Geoscience and Remote Sensing, 2020, 59 (4): 2922- 2939. |
29 |
WANG Z Z , LI J , ZHANG S W , et al. Prelaunch calibration of microwave humidity sounder on China's FY-3A meteorological satellite[J]. IEEE Geoscience and Remoteing Letters, 2011, 8 (1): 29- 33.
doi: 10.1109/LGRS.2010.2050676 |
30 |
YAN L , HU Y H , ZHANG Y , et al. Radiometric calibration evaluation for FY3D MERSI-Ⅱ thermal infrared channels at Lake Qinghai[J]. Remote Sensing, 2021, 13 (3): 466.
doi: 10.3390/rs13030466 |
31 | 李一楠, 张林让, 卢海梁, 等. 基于地基综合孔径微波辐射计的空中目标无源探测技术研究[J]. 电子与信息学报, 2021, 43 (5): 1243- 1250. |
LI Y N , ZHANG L R , LU H L , et al. Research on the aerial target detection by ground-based synthesis aperture microwave radiometers[J]. Journal of Electronics and Information Technology, 2020, 43 (5): 1243- 1250. |
[1] | 孙田野, 孙伟, 吴建军. 改进Quatre算法的无人机编队快速集结方法[J]. 系统工程与电子技术, 2022, 44(9): 2840-2848. |
[2] | 胡泰洋, 张晋宇, 卢海梁, 李鹏飞, 李一楠, 吕容川. 基于数据融合的分布式综合孔径微波辐射高分辨率成像算法[J]. 系统工程与电子技术, 2022, 44(8): 2403-2409. |
[3] | 孙林, 毛忠阳, 康家方, 张磊. 基于最大化能效的海上中继通信频谱分配算法[J]. 系统工程与电子技术, 2022, 44(8): 2661-2667. |
[4] | 刘红亮, 陈超, 黄昆伟, 卢博, 岳凯. 针对分布式雷达网的多帧联合航迹起始方法[J]. 系统工程与电子技术, 2022, 44(7): 2143-2147. |
[5] | 曾守桢, 胡英杰. 基于高度残缺信息的分布式语言信任网络群决策方法[J]. 系统工程与电子技术, 2022, 44(6): 1907-1919. |
[6] | 高天旸, 胡笑旋, 夏维. 基于分布式协同进化的星座自主任务规划算法[J]. 系统工程与电子技术, 2022, 44(5): 1600-1608. |
[7] | 刘嘉琛, 董磊, 赵长啸, 陈泓兵. 基于形式化方法的DIMA动态重构仿真与验证[J]. 系统工程与电子技术, 2022, 44(4): 1282-1290. |
[8] | 刘高赛, 姜兴龙, 李华旺, 梁广. 基于位置感知的大规模LEO星座分布式路由算法[J]. 系统工程与电子技术, 2022, 44(11): 3529-3536. |
[9] | 王华华, 李延山, 张志豪, 梁家敏. 基于期望传播的分布式信号检测算法[J]. 系统工程与电子技术, 2022, 44(11): 3564-3570. |
[10] | 靳鹏, 李康. 基于改进合同网协议的分布式卫星资源调度[J]. 系统工程与电子技术, 2022, 44(10): 3164-3173. |
[11] | 罗哲, 权婉珍, 张朴睿, 杨小冈. 单边Lipschitz非线性多智能体系统一致性追踪控制[J]. 系统工程与电子技术, 2022, 44(1): 279-284. |
[12] | 王鹏, 刘嘉琛, 董磊, 赵长啸. 面向任务的民机DIMA动态重构策略[J]. 系统工程与电子技术, 2021, 43(6): 1618-1627. |
[13] | 周晶, 赵晓哲, 许震, 林众, 张晓盼. 基于D-NSGA-Ⅲ算法的无人机群高维多目标任务分配方法[J]. 系统工程与电子技术, 2021, 43(5): 1240-1247. |
[14] | 李贵勇, 于敏, 余永坤. 大规模MIMO系统中分布式压缩感知LMMSE信道估计[J]. 系统工程与电子技术, 2021, 43(3): 823-831. |
[15] | 蒋春启, 郑娜娥, 左宗, 王盛, 陈翔. 突出重点目标跟踪的分布式MIMO雷达阵元选取[J]. 系统工程与电子技术, 2021, 43(10): 2860-2868. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||