系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (7): 2074-2083.doi: 10.12305/j.issn.1001-506X.2022.07.02

• 电子技术 • 上一篇    下一篇

基于空谱信息协同与Gram-Schmidt变换的多源遥感图像融合方法

童莹萍1, 全英汇1, 冯伟1,*, 邢孟道2   

  1. 1. 西安电子科技大学电子工程学院, 陕西 西安 710071
    2. 西安电子科技大学前沿交叉研究院, 陕西 西安 710071
  • 收稿日期:2021-07-09 出版日期:2022-06-22 发布日期:2022-06-28
  • 通讯作者: 冯伟
  • 作者简介:童莹萍 (1996—), 女, 硕士研究生, 主要研究方向为遥感图像处理|全英汇 (1981—), 男, 教授, 博士, 主要研究方向为微波遥感技术|冯伟 (1985—), 女, 副教授, 博士, 主要研究方向为人工智能、遥感图像处理|邢孟道 (1974—), 男, 教授, 博士, 主要研究方向为SAR/ISAR成像和动目标检测
  • 基金资助:
    国家自然科学基金(61772397);陕西省自然科学基础研究发展计划-杰出青年科学基金(2021JC-23);榆林市科技局项目(CXY-2020-094)

Multi-source remote sensing image fusion method based on spatial-spectrum information collaboration and Gram-Schmidt transform

Yingping TONG1, Yinghui QUAN1, Wei FENG1,*, Mengdao XING2   

  1. 1. School of Electronic Engineering, Xidian University, Xi'an 710071, China
    2. Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710071, China
  • Received:2021-07-09 Online:2022-06-22 Published:2022-06-28
  • Contact: Wei FENG

摘要:

多光谱和合成孔径雷达图像的融合可以保留每个数据的优势, 有利于提高土地覆盖分类精度。然而, 当前的一些图像融合方法不能完全利用原始数据的光谱信息与纹理细节。为了克服上述问题, 提出一种基于空谱信息协同和Gram-Schmidt变换的融合方法。在所提方法中, Sentinel-2A图像和高分三号(GaoFen-3, GF-3)图像分别经过不同的预处理操作。由于灰度共生矩阵能有效提取图像的纹理信息, 因此将其应用于Sentinel-2A图像以提取结构特征, 并将空谱信息协同的多光谱图像与GF-3图像通过Gram-Schmidt变换进行融合。实验采用主成分分析法和传统的Gram-Schmidt变换作为比较方法。为了确定融合算法的有效性, 采用5项评价指标(包括平均梯度、空间频率、均值、标准差和相关系数)来衡量融合图像的质量。此外, 由于随机森林具有优秀的训练速度和出色的分类性能, 将其用于土地覆盖分类。随机森林的分类精度、Kappa系数和分类结果图作为融合方法的评价标准。实验结果表明, 与单独使用原始Sentinel-2A相比, 所提方法可以将整体精度提高多达5%, 具有提高遥感卫星图像土地覆盖分类精度的潜力。

关键词: 图像融合, 分类, 多光谱, 遥感

Abstract:

The fusion of multispectral and synthetic aperture radar (SAR) images can retain the advantages of each data and improve the accuracy of land cover classification. However, some current image fusion methods cannot fully utilize the spectral information and texture details of the original data. In order to overcome these problems, a fusion method based on space-spectrum information collaboration and Gram-Schmidt transform is proposed. In the proposed method, Sentinel-2A images and GaoFen-3 (GF-3) images are preprocessed by different methods. Since the gray co-occurrence matrix can effectively extract the texture information of the image, it is applied to the Sentinel-2A image to extract the structural features, and the multispectral image coordinated by the space-spectrum information is fused with GF-3 image by the Gram-Schmidt transform. Principal component analysis (PCA) and the traditional Gram-Schmidt transform are used as the comparison methods in this experiment. In order to determine the effectiveness of the fusion algorithm, this paper uses five evaluation indicators including average gradient, spatial frequency, mean, standard deviation and correlation coefficient to measure the quality of the fusion image. In addition, due to its excellent training speed and excellent classification performance, random forest is used for land cover classification. The classification accuracy of random forest, Kappa coefficient and classification result graph are used as the evaluation criteria of the fusion method. Experimental results show that, compared with the original Sentinel-2A alone, the proposed fusion method can improve the overall accuracy by up to 5%, and has the potential to improve the accuracy of land cover classification in remote sensing satellite images.

Key words: image fusion, classification, multispectral, remote sensing

中图分类号: