1 |
WEIMER J P. Present and future of aircraft electrical power systems[C]//Proc. of the 39th Aerospace Sciences Meeting and Exhibit, 2013.
|
2 |
WHEELER P. Technology for the more and all electric aircraft of the future[C]//Proc. of the IEEE International Conference on Automatica, 2016.
|
3 |
WHEELER P , BOZHKO S . The more electric aircraft: techno-logy and challenges[J]. IEEE Electrification Magazine, 2014, 2 (4): 6- 12.
doi: 10.1109/MELE.2014.2360720
|
4 |
ZHANG S F, LI M W, ZHENG H Y, et al. Aircraft fuel system fuzzy FMEA and FMECA analysis[C]//Proc. of the 1st International Conference on Information Sciences, Machinery, Materials and Energy, 2015: 378-382.
|
5 |
JUN L , XU H B . Reliability analysis of aircraft equipment based on FMECA method[J]. Physics Procedia, 2012, 25, 1816- 1822.
doi: 10.1016/j.phpro.2012.03.316
|
6 |
HUANG Z T , WANG Z S , LIU Z B . Fault diagnosis of aircraft power supply based on priority dynamic fault tree[J]. Advanced Materials Research, 2012, 443, 229- 236.
|
7 |
JAVADI M S , NOBAKHT A , MESKARBASHEE A . Fault tree analysis approach in reliability assessment of power system[J]. International Journal of Multidisciplinary Sciences and Engineering, 2011, 2 (6): 46- 50.
|
8 |
HE L R , YIN C , PENG W W , et al. Reliability and risk assessment of aircraft electric systems[J]. Maintenance and Reliability, 2014, 16, 497- 506.
|
9 |
吴昊, 左洪福. 基于改进层次分析法的民用飞机修理级别非经济性分析[J]. 飞机设计, 2008, 28 (6): 46- 49.
|
|
WU H , ZUO H F . Level of repair analysis non-economic evaluation for aircraft maintenance based on improved AHP[J]. Aircraft Design, 2008, 6, 46- 49.
|
10 |
江亮亮. 飞机电源系统故障诊断研究[D]. 北京: 北京航天航空大学, 2013.
|
|
JIANG L L. Research on fault diagnosis of aircraft power supply system[D]. Beijing: Beihang University, 2013.
|
11 |
徐宇恒. 基于故障数据的西门诺尔飞机电源系统可靠性分析[D]. 广汉: 中国民用航空飞行学院, 2020.
|
|
CHEN Y H. Reliability analysis of power supply system for Seminole aircraft based on fault data[D]. Guanghan: Civil Aviation Flight University of China, 2020.
|
12 |
陈源. 基于模糊FMECA方法的飞机供电系统可靠性分析研究[D]. 成都: 电子科技大学, 2011.
|
|
CHEN Y. Reliability analysis of aircraft power supply system based on fuzzy FMECA[D]. Chengdu: University of Electronic Science and Technology of China, 2011.
|
13 |
张文军. 基于加权模糊TOPSIS方法的系统失效风险分析研究[D]. 南京: 南京航空航天大学, 2016.
|
|
ZHANG W J. Research on system failure risk analysis based on weighted fuzzy TOPSIS method[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016.
|
14 |
李新月, 高琦, 刘军. 基于模糊共因失效分析的FMEA风险评估方法[J]. 组合机床与自动化加工技术, 2017, (10): 62- 65.
|
|
LI X Y , GAO Q , LIU J . An improved FMEA risk assessment method considering the fuzzy common cause failures[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2017, (10): 62- 65.
|
15 |
邹运. 基于模糊FMEA方法的改进西门子生产硅风险分析[D]. 重庆: 重庆科技学院, 2015.
|
|
ZOU Y. Risk analysis of improved Siemens silicon production based on fuzzy FMEA method[D]. Chongqing: Chongqing University of Science and Technology, 2015.
|
16 |
DZITAC I , FILIP F G , MANOLESCU M J . Fuzzy logic is not fuzzy: world-renowned computer scientist Lotfi A. Zadeh[J]. International Journal of Computers Communications & Control, 2017, 12 (6): 748- 789.
|
17 |
FEI L G , WANG H P , CHEN L Y , et al. A new vector valued similarity measure for intuitionistic fuzzy sets based on OWA operators[J]. Iranian Journal of Fuzzy Systems, 2019, 16 (3): 113- 126.
|
18 |
匡雅, 邹树梁, 唐德文, 等. 基于模糊FMEA法的乏燃料剪切机剪切装置风险评估[J]. 安全与环境学报, 2016, 6 (5): 15- 20.
|
|
KUANG Y , ZOU S L , TANG D W , et al. Risk analysis for the used or spent fuel shearing machine based on the fuzzy FMEA[J]. Journal of Safety and Environment, 2016, 16 (5): 15- 20.
|