系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (6): 2051-2059.doi: 10.12305/j.issn.1001-506X.2022.06.34

• 可靠性 • 上一篇    下一篇

基于改进深度残差网络的旋转机械故障诊断

侯召国, 王华伟*, 周良, 付强   

  1. 南京航空航天大学民航学院, 江苏 南京 211106
  • 收稿日期:2021-07-15 出版日期:2022-05-30 发布日期:2022-05-30
  • 通讯作者: 王华伟
  • 作者简介:侯召国(1996—), 男, 硕士研究生, 主要研究方向为故障诊断、航空器健康管理|王华伟 (1974—),女,教授,博士研究生导师,博士,主要研究方向为民航安全工程、民航维修工程、可靠性工程|周良 (1996—),男,硕士研究生,主要研究方向为故障诊断、民机健康监测|付强(1990—), 男, 博士研究生, 主要研究方向为状态监测、民航安全风险评估
  • 基金资助:
    国家自然科学基金和民航联合研究基金(U1833110)

Fault diagnosis of rotating machinery based on improved deep residual network

Zhaoguo HOU, Huawei WANG*, Liang ZHOU, Qiang FU   

  1. School of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
  • Received:2021-07-15 Online:2022-05-30 Published:2022-05-30
  • Contact: Huawei WANG

摘要:

针对旋转机械工况复杂多变、有标签样本不足而导致的故障特征提取困难等问题, 提出了一种用于旋转机械故障诊断的改进深度残差网络(improved deep residual network, IDRN)。首先, 采集旋转机械一维振动信号进行数据预处理; 然后, 在深度残差网络的基础上引入了长短时记忆(long short-term memory, LSTM)网络, 其中, LSTM网络可以有效捕捉故障的时序信息; 在残差块中引入Dropout层提高了故障诊断的精度和收敛速度; 最后在轴承与齿轮数据集上验证本文提出方法的有效性。实验结果表明, 该方法在堆叠多层网络模型时, 没有出现明显的网络退化现象, 与当前广泛使用的几种诊断方法进行对比实验, 表现出了较高的平均诊断精度和良好的适用性。

关键词: 故障诊断, 改进深度残差网络, 长短时记忆网络, Dropout层

Abstract:

An improved deep residual network (IDRN) for fault diagnosis of rotating machinery is proposed to solve the problems of fault feature extraction difficulty caused by complex and variable working conditions and insufficient samples of labels. Firstly, one-dimensional vibration signals of rotating machinery are collected for data preprocessing. Then, long short-term memory (LSTM) network is introduced on the basis of the deep residual network, in which the time-series information of faults could be captured effectively.The Dropout layer is introduced into the residual block to improve the accuracy and convergence speed of fault diagnosis. Finally, the validity of the proposed method is verified on the data sets of bearings and gears.Experimental results show that there is no obvious network degradation phenomenon when the proposed method is used to stack multi-layer network models. Compared with several widely used diagnostic methods, the proposed method shows higher average diagnostic accuracy and good applicability.

Key words: fault diagnosis, improved deep residual network (IDRN), long short-term memory (LSTM) network, Dropout layer

中图分类号: