系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (6): 2051-2059.doi: 10.12305/j.issn.1001-506X.2022.06.34
侯召国, 王华伟*, 周良, 付强
收稿日期:
2021-07-15
出版日期:
2022-05-30
发布日期:
2022-05-30
通讯作者:
王华伟
作者简介:
侯召国(1996—), 男, 硕士研究生, 主要研究方向为故障诊断、航空器健康管理|王华伟 (1974—),女,教授,博士研究生导师,博士,主要研究方向为民航安全工程、民航维修工程、可靠性工程|周良 (1996—),男,硕士研究生,主要研究方向为故障诊断、民机健康监测|付强(1990—), 男, 博士研究生, 主要研究方向为状态监测、民航安全风险评估
基金资助:
Zhaoguo HOU, Huawei WANG*, Liang ZHOU, Qiang FU
Received:
2021-07-15
Online:
2022-05-30
Published:
2022-05-30
Contact:
Huawei WANG
摘要:
针对旋转机械工况复杂多变、有标签样本不足而导致的故障特征提取困难等问题, 提出了一种用于旋转机械故障诊断的改进深度残差网络(improved deep residual network, IDRN)。首先, 采集旋转机械一维振动信号进行数据预处理; 然后, 在深度残差网络的基础上引入了长短时记忆(long short-term memory, LSTM)网络, 其中, LSTM网络可以有效捕捉故障的时序信息; 在残差块中引入Dropout层提高了故障诊断的精度和收敛速度; 最后在轴承与齿轮数据集上验证本文提出方法的有效性。实验结果表明, 该方法在堆叠多层网络模型时, 没有出现明显的网络退化现象, 与当前广泛使用的几种诊断方法进行对比实验, 表现出了较高的平均诊断精度和良好的适用性。
中图分类号:
侯召国, 王华伟, 周良, 付强. 基于改进深度残差网络的旋转机械故障诊断[J]. 系统工程与电子技术, 2022, 44(6): 2051-2059.
Zhaoguo HOU, Huawei WANG, Liang ZHOU, Qiang FU. Fault diagnosis of rotating machinery based on improved deep residual network[J]. Systems Engineering and Electronics, 2022, 44(6): 2051-2059.
表4
IDRN模型参数"
模型结构 | 模型参数 | 激活函数 | 输入大小 | 输出大小 |
输入层 | - | - | (None, 2 048, 1) | (None, 2 048, 1) |
卷积层 | (32, 3) | ReLU | (None, 2 048, 1) | (None, 2 046, 32) |
卷积层 | (32, 3) | ReLU | (None, 2 046, 32) | (None, 2 044, 32) |
最大池化层 | 3 | - | (None, 2 044, 32) | (None, 681, 32) |
LSTM网络层 | 32 | Tanh | (None, 681, 32) | (None, 681, 32) |
改进残差块1 | (32, 3) | ReLU | (None, 681, 32) | (None, 681, 32) |
改进残差块2 | (32, 3) | ReLU | (None, 681, 32) | (None, 681, 32) |
改进残差块3 | (32, 3) | ReLU | (None, 681, 32) | (None, 681, 32) |
卷积层 | (32, 3) | ReLU | (None, 681, 32) | (None, 679, 32) |
全局平均池化层 | - | - | (None, 679, 32) | (None, 32) |
全连接层 | 64 | ReLU | (None, 32) | (None, 64) |
丢弃层 | 0.25 | - | (None, 64) | (None, 64) |
分类层 | 6 | Softmax | (None, 64) | (None, 6) |
表5
对比模型训练参数"
模型 | 单工况参数设置 |
BPNN | 网络结构为[32,6],训练周期为20,学习率为0.001,优化器采用随机梯度下降 |
MLP | 网络结构为[64,32,16,6],训练周期为20,学习率为0.001,优化器为Adam |
SAE | 网络结构为[64,32,16,10,16,32,64,6],训练周期为20,学习率为0.001,优化器为Adam |
CNN | 网络包含3个卷积层,每个卷积层滤波器尺寸分别为[16,32,64],卷积核大小分别为[64,3,3],池化步长为2,训练周期为20,学习率为0.001,优化器为Adam |
RNN | 网络结构为[32,32,16,32,6],训练周期为20,学习率为0.001,优化器为Adam |
DRN | 网络结构包含3个残差块,每个残差块包含2个卷积层和1个Dropout层,每个卷积层滤波器尺寸为32,卷积核大小为3,训练周期为20,学习率为0.001,优化器为Adam |
表6
模型对比实验精度"
模型 | 轴承单工况数据 | 轴承变工况数据 | 齿轮数据 | |||||||||
训练集 | 验证集 | 测试集 | 训练集 | 验证集 | 测试集 | 训练集 | 验证集 | 测试集 | 测试集平均 | |||
BPNN | 43.76 | 41.75 | 38.16 | 38.14 | 30.00 | 33.00 | 50.34 | 38.30 | 37.00 | 36.05 | ||
MLP | 97.21 | 95.69 | 96.33 | 97.61 | 93.50 | 94.24 | 81.89 | 42.00 | 40.59 | 77.05 | ||
SAE | 97.77 | 95.92 | 95.66 | 96.34 | 94.50 | 95.24 | 79.69 | 55.70 | 56.99 | 82.63 | ||
CNN | 98.40 | 97.17 | 96.60 | 98.90 | 98.45 | 98.23 | 98.31 | 87.00 | 87.59 | 94.14 | ||
RNN | 96.00 | 94.15 | 93.33 | 95.00 | 93.23 | 94.15 | 95.43 | 84.44 | 85.69 | 91.05 | ||
DRN | 98.60 | 98.25 | 97.75 | 98.90 | 98.54 | 98.36 | 97.69 | 90.50 | 89.39 | 95.16 | ||
IDRN(本文所提方法) | 99.95 | 99.90 | 99.80 | 99.86 | 99.75 | 99.69 | 96.46 | 91.30 | 91.00 | 96.83 |
1 |
WU X Y , ZHANG Y , CHENG C M , et al. A hybrid classification autoencoder for semi-supervised fault diagnosis in rotating machinery[J]. Mechanical Systems and Signal Processing, 2021, 149, 107327.
doi: 10.1016/j.ymssp.2020.107327 |
2 |
GUO J C , ZHEN D , LI H Y , et al. Fault feature extraction for rolling element bearing diagnosis based on a multi-stage noise reduction method[J]. Measurement, 2019, 139, 226- 235.
doi: 10.1016/j.measurement.2019.02.072 |
3 |
LEI Y G , YANG B , JIANG X W , et al. Applications of machine learning to machine fault diagnosis: a review and roadmap[J]. Mechanical Systems and Signal Processing, 2020, 138, 106587.
doi: 10.1016/j.ymssp.2019.106587 |
4 | 邵海东, 张笑阳, 程军圣, 等. 基于提升深度迁移自动编码器的轴承智能故障诊断[J]. 机械工程学报, 2020, 56 (9): 84- 90. |
SHAO H D , ZHANG X Y , CHENG J S , et al. Intelligent fault dia-gnosis of bearings based on lifting depth migration autoencoder[J]. Journal of Mechanical Engineering, 2020, 56 (9): 84- 90. | |
5 |
SHAO H D , JIANG H K , ZHANG H Z , et al. Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing[J]. Mechanical Systems and Signal Processing, 2018, 100, 743- 765.
doi: 10.1016/j.ymssp.2017.08.002 |
6 |
LI X Y , LI J L , ZHAO C Y , et al. Gear pitting fault diagnosis with mixed operating conditions based on adaptive 1D separable convolution with residual connection[J]. Mechanical Systems and Signal Processing, 2020, 142, 106740.
doi: 10.1016/j.ymssp.2020.106740 |
7 |
ZHANG K , TANG B P , DENG L , et al. A hybrid attention improved ResNet based fault diagnosis method of wind turbines gearbox[J]. Measurement, 2021, 179, 109491.
doi: 10.1016/j.measurement.2021.109491 |
8 |
HOANG D T , KANG H J . Rolling element bearing fault diagnosis using convolutional neural network and vibration image[J]. Cognitive Systems Research, 2019, 53, 42- 50.
doi: 10.1016/j.cogsys.2018.03.002 |
9 |
YU J B , ZHOU X K . One-dimensional residual convolutional autoencoder based feature learning for gearbox fault diagnosis[J]. IEEE Trans.on Industrial Informatics, 2020, 16 (10): 6347- 6358.
doi: 10.1109/TII.2020.2966326 |
10 |
MAO W T , FENG W S , LIU Y M , et al. A new deep auto-encoder method with fusing discriminant information for bearing fault diagnosis[J]. Mechanical Systems and Signal Processing, 2021, 150, 107233.
doi: 10.1016/j.ymssp.2020.107233 |
11 |
LU C , WANG Z Y , ZHOU B . Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification[J]. Advanced Engineering Informatics, 2017, 32, 139- 151.
doi: 10.1016/j.aei.2017.02.005 |
12 |
JIA F , LEI Y G , LIN J , et al. Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data[J]. Mechanical Systems and Signal Processing, 2016, 72/73, 303- 315.
doi: 10.1016/j.ymssp.2015.10.025 |
13 |
陈国梁, 岳夏, 周超, 等. 机械故障诊断技术机遇与挑战[J]. 机电工程技术, 2020, 49 (10): 1- 4.
doi: 10.3969/j.issn.1009-9492.2020.10.001 |
CHEN G L , YUE X , ZHOU C , et al. Opportunity and challenge to the development of mechanical fault diagnosis technology[J]. Mechanical & Electrical Engineering Technology, 2020, 49 (10): 1- 4.
doi: 10.3969/j.issn.1009-9492.2020.10.001 |
|
14 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Computer Vision and Pattern Recognition, 2016: 770-778. |
15 | 田强, 贾小宁. 基于深度残差神经网络的车标识别[J]. 吉林大学学报, 2021, 59 (2): 319- 324. |
TIAN Q , JIA X N . Vehicle sign recognition based on deep residual neural network[J]. Journal of Jilin University, 2021, 59 (2): 319- 324. | |
16 | HINTON G , SRIVASTAVA N , KRIZHEVSKY A , et al. Improving neural networks by preventing co-adaptation of feature detectors[J]. Computer Science, 2012, 3 (4): 212- 223. |
17 | SRIVASTAVA N , HINTON G , KRIZHEVSKY A , et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15 (1): 1929- 1958. |
18 |
CHEN L T , XU G H , TAO T F , et al. Deep residual network for identifying bearing fault location and fault severity concurrently[J]. IEEE Access, 2020, 8, 168026- 168035.
doi: 10.1109/ACCESS.2020.3023970 |
19 |
ZHANG W , PENG G L , LI C H , et al. A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals[J]. Sensors, 2017, 17, 425.
doi: 10.3390/s17020425 |
20 | 陈保家, 陈学力, 沈保明, 等. CNN-LSTM深度神经网络在滚动轴承故障诊断中的应用[J]. 西安交通大学学报, 2021, 55 (6): 28- 36. |
CHEN B J , CHEN X L , SHEN B M , et al. Application of CNN-LSTM deep neural network in rolling bearing fault diagnosis[J]. Journal of Xi'an Jiaotong University, 2021, 55 (6): 28- 36. | |
21 | 张强, 黄挺, 陆效农, 等. 基于CNN-LSTM深度学习方法及多属性时序数据的故障诊断方法. 中国, 201811472378.6[P]. 2018-12-04. |
ZHANG Q, HUANG T, LU X N, et al. Fault diagnosis method based on CNN-LSTM deep learning method and multi-attribute time-series data. China, 201811472378.6[P]. 2018-12-04. | |
22 |
WANG Y M , CHENG L . A combination of residual and long-short-term memory networks for bearing fault diagnosis based on time-series model analysis[J]. Measurement Science and Technology, 2021, 32, 015904.
doi: 10.1088/1361-6501/abaa1e |
23 |
JIAO J Y , ZHAO M , LIN J , et al. Residual joint adaptation adversarial network for intelligent transfer fault diagnosis[J]. Mechanical Systems and Signal Processing, 2020, 145, 106962.
doi: 10.1016/j.ymssp.2020.106962 |
24 |
CHEN Z Y , MAURICIO A , LI W H , et al. A deep learning method for bearing fault diagnosis based on cyclic spectral coherence and convolutional neural networks[J]. Mechanical Systems and Signal Processing, 2020, 140, 106683.
doi: 10.1016/j.ymssp.2020.106683 |
25 |
SHAO S Y , MCALEER S , YAN R Q , et al. Highly accurate machine fault diagnosis using deep transfer learning[J]. IEEE Trans.on Industrial Informatics, 2019, 15 (4): 2446- 2455.
doi: 10.1109/TII.2018.2864759 |
26 |
LI X , LI X , MA H . Deep representation clustering-based fault diagnosis method with unsupervised data applied to rotating machinery[J]. Mechanical Systems and Signal Processing, 2020, 143, 106825.
doi: 10.1016/j.ymssp.2020.106825 |
27 |
XIANG Z , ZHANG X N , ZHANG W W , et al. Fault diagnosis of rolling bearing under fluctuating speed and variable load based on TCO spectrum and stacking auto-encoder[J]. Measurement, 2019, 138, 162- 174.
doi: 10.1016/j.measurement.2019.01.063 |
28 |
JIANG W , ZHOU J Z , LIU H , et al. A multi-step progressive fault diagnosis method for rolling element bearing based on energy entropy theoryand hybrid ensemble auto-encoder[J]. ISA Transactions, 2019, 87, 235- 250.
doi: 10.1016/j.isatra.2018.11.044 |
29 |
ZHOU Q , LI Y B , TIAN Y , et al. A novel method based on nonlinear auto-regression neural network and convolutional neural network for imbalanced fault diagnosis of rotating machinery[J]. Measurement, 2020, 161, 107880.
doi: 10.1016/j.measurement.2020.107880 |
30 |
MENG Z , ZHAN X Y , LI J , et al. An enhancement denoising autoencoder for rolling bearing fault diagnosis[J]. Measurement, 2018, 130, 448- 454.
doi: 10.1016/j.measurement.2018.08.010 |
[1] | 高升, 马广富, 郭延宁. 基于自适应未知输入观测器的多故障快速重构[J]. 系统工程与电子技术, 2022, 44(7): 2364-2373. |
[2] | 吉瑞萍, 张程祎, 梁彦, 王跃东. 基于LSTM的弹道导弹主动段轨迹预报[J]. 系统工程与电子技术, 2022, 44(6): 1968-1976. |
[3] | 孙世岩, 张钢, 梁伟阁, 佘博, 田福庆. 基于时间序列数据扩增和BLSTM的滚动轴承剩余寿命预测方法[J]. 系统工程与电子技术, 2022, 44(3): 1060-1068. |
[4] | 刘星, 王文双, 赵建印, 朱敏. 自适应在线增量ELM的故障诊断模型研究[J]. 系统工程与电子技术, 2021, 43(9): 2678-2687. |
[5] | 舒涛, 张一弛, 丁日显. 基于灰色模型与LSTM网络的旋转机械轴承寿命预测[J]. 系统工程与电子技术, 2021, 43(8): 2355-2361. |
[6] | 李睿峰, 许爱强, 孙伟超, 王树友. 基于元学习的航空电子设备特征选择算法推荐方法[J]. 系统工程与电子技术, 2021, 43(7): 2011-2020. |
[7] | 陈洪转, 赵爱佳, 李腾蛟, 蔡匆聪, 程硕, 徐春丽. 基于故障树的复杂装备模糊贝叶斯网络推理故障诊断[J]. 系统工程与电子技术, 2021, 43(5): 1248-1261. |
[8] | 王力, 刘子奇. WPA-IGA-BP神经网络的模拟电路故障诊断[J]. 系统工程与电子技术, 2021, 43(4): 1133-1143. |
[9] | 戴金玲, 许爱强. 基于动态软聚类的航空电子部件LMKELM诊断模型[J]. 系统工程与电子技术, 2021, 43(3): 637-646. |
[10] | 赵俊龙, 李伟, 王泓霖, 黄腾, 甘奕夫, 王也. 基于长短时记忆网络的雷达波形设计[J]. 系统工程与电子技术, 2021, 43(2): 376-382. |
[11] | 孟晨, 杨华晖, 王成, 马征. 数据驱动的武器系统电子元部件级故障诊断研究综述[J]. 系统工程与电子技术, 2021, 43(2): 574-583. |
[12] | 张一凡, 张双辉, 刘永祥, 荆锋. 基于注意力机制的堆叠LSTM网络雷达HRRP序列目标识别方法[J]. 系统工程与电子技术, 2021, 43(10): 2775-2781. |
[13] | 马云飞, 贾希胜, 白华军, 郭驰名, 王双川. 基于一维CNN参数优化的压缩振动信号故障诊断[J]. 系统工程与电子技术, 2020, 42(9): 1911-1919. |
[14] | 刘凯, 张斌, 黄青华. 基于TCNN-BiLSTM网络的调制识别算法[J]. 系统工程与电子技术, 2020, 42(8): 1841-1849. |
[15] | 李京峰, 陈云翔, 项华春, 蔡忠义. 基于LSTM-DBN的航空发动机剩余寿命预测[J]. 系统工程与电子技术, 2020, 42(7): 1637-1644. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||