1 |
WU H , LI Y X , ZHOU L , et al. Convolutional neural network and multi-feature fusion for automatic modulation classification[J]. Electronics Letters, 2019, 55 (16): 895- 897.
doi: 10.1049/el.2019.1789
|
2 |
TANG B , TU Y , ZHANG S Y , et al. Digital signal modulation classification with data augmentation using generative adversarial nets in cognitive radio networks[J]. IEEE Access, 2018, 6, 15713- 15722.
doi: 10.1109/ACCESS.2018.2815741
|
3 |
童年, 李立春. 非重构压缩样值的MPSK信号最大似然调制识别[J]. 信息工程大学学报, 2015, 16 (5): 579- 583.
doi: 10.3969/j.issn.1671-0673.2015.05.012
|
|
TONG N , LI L C . Maximum likelihood modulation recognition of MPSK signals based on non-reconstructed compressed samples[J]. Journal of Information Engineering University, 2015, 16 (5): 579- 583.
doi: 10.3969/j.issn.1671-0673.2015.05.012
|
4 |
马碧云, 元达鹏, 刘娇蛟. 基于似然函数的双曲调频信号参数估计快速算法[J]. 电子与信息学报, 2020, 5, 1228- 1234.
|
|
MA B Y , YUAN D P , LIU J J . A fast algorithm for parameter estimation of hyperbolic frequency modulation signals based on likelihood function[J]. Journal of Electronics and Information Technology, 2020, 5, 1228- 1234.
|
5 |
MI X J , TIAN Y , KANG B Y . A hybrid multi-criteria decision making approach for assessing health-care waste management technologies based on soft likelihood function and D-numbers[J]. Applied Intelligence, 2021, 51, 6708- 6727.
doi: 10.1007/s10489-020-02148-7
|
6 |
郭黎利, 刘湘蒲, 付江志, 等. 基于压缩循环谱的mW复合序列参数估计[J]. 华南理工大学学报(自然科学版), 2016, 44 (5): 29- 35.
|
|
GUO L L , LIU X P , FU J Z , et al. Parameter estimation of MW composite sequence based on compression cycle spectrum[J]. Journal of South China University of Technology (Natural Science), 2016, 44 (5): 29- 35.
|
7 |
叶芝慧, 李昂, 彭文攀. 基于混合OFDM调制的认知网络快速组网技术[J]. 东南大学学报(自然科学版), 2017, 47 (4): 637- 641.
|
|
YE Z H , LI A , PENG W P . A fast networking technology of cognitive network based on hybrid OFDM modulation[J]. Journal of Southeast University (Natural Science), 2017, 47 (4): 637- 641.
|
8 |
WANG H, GUO L L. A new method of automatic modulation recognition based on dimension reduction[C]//Proc. of the IEEE Forum on Cooperative Positioning and Service, 2017: 316-320.
|
9 |
张立民, 凌青, 闫文君. 基于高阶累积量的空时分组码盲识别算法研究[J]. 通信学报, 2016, 37 (5): 1- 8.
|
|
ZHANG L M , LING Q , YAN W J . Research on blind recognition algorithm of space-time block codes based on high-order cumulants[J]. Journal of Communication, 2016, 37 (5): 1- 8.
|
10 |
谭晓衡, 褚国星, 张雪静, 等. 基于高阶累积量和小波变换的调制识别算法[J]. 系统工程与电子技术, 2018, 40 (1): 171- 177.
|
|
TANG X H , CHU G X , ZHANG X J , et al. Modulation recogni tion algorithm based on high order cumulant and wavelet transform[J]. Systems Engineering and Electronics, 2018, 40 (1): 171- 177.
|
11 |
ABU-ROMOH M , ABOUTALEB A , REZKI Z . Automatic modulation classification using moments and likelihood maximization[J]. IEEE Communications Letters, 2018, 22 (5): 938- 941.
|
12 |
O'SHEA T J, CORGAN J, CLANCY T C, et al. Convolutional radio modulation recognition networks[C]//Proc. of the International Conference on Engineering Applications of Neural Networks, 2016: 213-226.
|
13 |
WEST N E, O'SHEA T J. Deep architectures for modulation recognition[C]//Proc. of the IEEE International Symposium on Dynamic Spectrum Access Networks, 2017.
|
14 |
O'SHEA T J , ROY T , CLANCY T C . Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12 (1): 168- 179.
|
15 |
WANG J , WANG W F , LUO F X , et al. Modulation classification based on denoising autoencoder and convolutional neural network with GNU radio[J]. The Journal of Engineering, 2019, 19, 6188- 6191.
|
16 |
FAN M , PENG C , WU L N , et al. Automatic modulation classification: a deep learning enabled approach[J]. IEEE Trans.on Vehicular Technology, 2018, 67 (11): 10760- 10772.
|
17 |
QI P H , ZHOU X Y , ZHENG S S , et al. Automatic modulation classification based on deep residual networks with multimodal information[J]. IEEE Trans.on Cognitive Communications and Networking, 2021, 7 (1): 21- 33.
|
18 |
ODENA A. Semi-supervised learning with generative adversarial networks[C]//Proc. of the Data Efficient Machine Learning Workshop at International Conference on Machine Learning, 2016.
|
19 |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proc. of the 27th International Conference on Neural Information Processing Systems, 2014, 2: 2672-2680.
|
20 |
BU K , HE Y , JING X J , et al. Adversarial transfer learning for deep learning based automatic modulation classification[J]. IEEE Signal Processing Letters, 2020, 27, 880- 884.
|
21 |
HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: surpassing human-level performance on image net classification[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1026-1034.
|
22 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|