系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (6): 1984-1993.doi: 10.12305/j.issn.1001-506X.2022.06.26

• 制导、导航与控制 • 上一篇    下一篇

基于模糊专家系统与IDE算法的UCAV逃逸机动决策

谭目来*, 丁达理, 谢磊, 丁维, 吕丞辉   

  1. 空军工程大学航空工程学院, 陕西 西安 710038
  • 收稿日期:2021-05-08 出版日期:2022-05-30 发布日期:2022-05-30
  • 通讯作者: 谭目来
  • 作者简介:谭目来(1998—), 男, 硕士研究生, 主要研究方向为无人飞行器作战系统与技术|丁达理(1980—), 男, 副教授, 博士, 主要研究方向为无人作战飞机自主空战|谢磊(1997—), 男, 硕士研究生, 主要研究方向为无人飞行器作战系统与技术|丁维(1996—), 男, 硕士研究生, 主要研究方向为基于强化学习的人工智能空战|吕丞辉(1995—), 男, 硕士研究生, 主要研究方向为数据预测
  • 基金资助:
    陕西省自然科学基金(2021JM-223);陕西省自然科学基金(2020JQ-481)

UCAV escape maneuvering decision based on fuzzy expert system and IDE algorithm

Mulai TAN*, Dali DING, Lei XIE, Wei DING, Chenghui LYU   

  1. Aeronautics Engineering College, Air Force Engineering University, Xi'an 710038, China
  • Received:2021-05-08 Online:2022-05-30 Published:2022-05-30
  • Contact: Mulai TAN

摘要:

针对现有研究中无人作战飞机(unmanned combat air vehicle, UCAV)近距逃逸机动的自适应性不足和战术性匮乏问题, 提出一种将模糊专家系统与双策略竞争的可选外部存档差分进化算法(external archiving differential evolution algorithm with dual strategy competition, DSC-JADE)相结合的逃逸机动决策算法。通过对战术知识的学习, 建立模糊专家系统, 将逃逸决策过程通过滚动时域划分为离散片段, 根据模糊专家系统决策得到机动动作, 在其控制量对应的可行域内, 采用改进差分进化算法(improved differential evolution, IDE)进行寻优得到最优控制量, 完成逃逸机动决策。在UCAV处于劣势的初始条件下进行仿真验证, 证明DSC-JADE算法相较原始差分进化以及其他传统群智能算法搜索能力更强,采用专家系统相较不采用专家系统逃逸决策能力更优。

关键词: 逃逸机动决策, 模糊专家系统, 改进差分进化算法, 滚动时域控制

Abstract:

Aiming at the problems of insufficient adaptability and lack of tactical capabilities of unmanned combat air vehicle (UCAV) in short-range escape maneuvers in existing research, an escape maneuvering decision algorithm combining fuzzy expert system and external archiving differential evolution algorithm with dual strategy competition (DSC-JADE) is proposed. Through the learning of tactical knowledge, a fuzzy expert system is established, and the escape decision process is divided into discrete segments through the receding horizon. According to the decision of the fuzzy expert system, the maneuver is obtained. In the feasible region corresponding to its control quantity, an improved differential evolution (IDE) algorithm is used to search the optimal control quantity, and the escape maneuver decision is completed. Under the initial conditions of inferior (UCAV) for simulation and verification, the DSC-JADE algorithm has a stronger search ability than the differential evolution algorithm and other traditional group intelligence algorithms; the use of expert systems has better escape decision-making capabilities than the use of expert systems.

Key words: escape maneuvering decision, fuzzy expert system, improved differential evolution algorithm, receding horizon control

中图分类号: