系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (6): 1934-1941.doi: 10.12305/j.issn.1001-506X.2022.06.20

• 系统工程 • 上一篇    下一篇

基于灰关联分析和时空偏好特征的兴趣点推荐算法

陈江美1, 张文德2,*   

  1. 1. 福州大学经济与管理学院, 福建 福州 350108
    2. 福州大学信息管理研究所, 福建 福州 350108
  • 收稿日期:2021-02-25 出版日期:2022-05-30 发布日期:2022-05-30
  • 通讯作者: 张文德
  • 作者简介:陈江美 (1995—), 女, 博士研究生, 主要研究方向为商务智能与数据挖掘|张文德 (1962—), 男, 教授, 博士, 主要研究方向为信息管理与信息系统、信息化管理
  • 基金资助:
    中国高校产学研创新基金新一代信息技术创新(2019ITA0103)

Point-of-interest recommendation algorithm based on grey relational analysis and temporal-spatial preference feature

Jiangmei CHEN1, Wende ZHANG2,*   

  1. 1. School of Economics & Management, Fuzhou University, Fuzhou 350108, China
    2. Institute of Information Management, Fuzhou University, Fuzhou 350108, China
  • Received:2021-02-25 Online:2022-05-30 Published:2022-05-30
  • Contact: Wende ZHANG

摘要:

为了提高动态推荐效果, 从时间个性化和连续性的角度出发, 细化了签到用户的时间特征, 利用灰关联分析度量时间向量的相似度, 与矩阵分解算法结合, 给出了一种新的矩阵分解算法。该算法可缓解时间戳细化签到矩阵后带来的数据稀疏的影响。同时为了提高个性化推荐, 采用自适应核密度估计方法捕捉用户的空间偏好, 增强用户的个性化体验, 进而提高推荐质量。在此基础上, 设计了一种新的兴趣点推荐算法。实验结果表明, 该算法能有效地提高推荐准确率和召回率。

关键词: 兴趣点推荐, 灰关联分析, 矩阵分解, 自适应核密度估计

Abstract:

To improve the effect of dynamic recommendation, the time characteristics from the perspective of temporal non-uniformness and consecutiveness is refined. The similarity of time vectors is measured using grey relational analysis (GRA) and incorporated with the matrix factorization algorithm. A new matrix decomposition algorithm is proposed, which can alleviate the data sparsity caused by dividing the check-in matrix with time slots. To achieve personalized recommendation, the adaptive kernel density estimation is leveraged to capture the personalized spatial preference, and thus enhance the recommendation quality. On this basis, a novel point-of-interest (POI) recommendation algorithm is designed. Experiment results show the proposed algorithm can effectively improve the precision and recall.

Key words: point-of-interest (POI) recommendation, grey relational analysis (GRA), matrix factorization, adaptive kernel density estimation

中图分类号: