系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (6): 1880-1888.doi: 10.12305/j.issn.1001-506X.2022.06.14
姜江, 金前程, 徐雪明, 侯帅, 李际超*
收稿日期:
2021-01-15
出版日期:
2022-05-30
发布日期:
2022-05-30
通讯作者:
李际超
作者简介:
姜江(1981—), 男, 副教授, 博士, 主要研究方向为不确定性推理与风险决策技术|金前程(1996—), 男, 硕士研究生, 主要研究方向为国防科技体系工程|徐雪明(1998—), 女, 硕士研究生, 主要研究方向为数据驱动的颠覆性创新识别|侯帅(1997—), 男, 硕士研究生, 主要研究方向为数据驱动的颠覆性技术预警|李际超(1990—), 男, 副教授, 博士, 主要研究方向为异质信息网络建模及分析、军事复杂系统智能决策
基金资助:
Jiang JIANG, Qiancheng JIN, Xueming XU, Shuai HOU, Jichao LI*
Received:
2021-01-15
Online:
2022-05-30
Published:
2022-05-30
Contact:
Jichao LI
摘要:
随着智能化时代的到来, 国防科技的研究与发展面临新的机遇与挑战。本文从体系视角出发, 对智能化时代国防科技体系工程开展了初步的探索。首先, 介绍了智能化时代国防科技体系工程的相关概念, 辨析了其内涵, 明确了其研究范畴, 构建了国防科技体系工程的研究框架。其次, 系统总结了国防科技体系工程研究重点关注的3个科学问题, 分别是建模问题、评估问题及预测问题, 并对解决这3大类问题的相关理论方法和技术手段进行了梳理介绍。最后, 对国防科技大学复杂系统与体系工程团队自主研发的国防科技体系工程软件支撑工具集进行了简要介绍。通过研究与实践, 为国防科技的发展战略制定、规划计划、项目管理等实际工作提供了理论、方法和技术支撑, 促进了科技创新能力提升和战斗力生成。
中图分类号:
姜江, 金前程, 徐雪明, 侯帅, 李际超. 智能化时代国防科技体系工程初探[J]. 系统工程与电子技术, 2022, 44(6): 1880-1888.
Jiang JIANG, Qiancheng JIN, Xueming XU, Shuai HOU, Jichao LI. Preliminary study on national defense science and technology system engineering in the era of intelligence[J]. Systems Engineering and Electronics, 2022, 44(6): 1880-1888.
表1
国防科技体系工程的内容以及范畴"
内容范畴 | 科学学 | 国防/军事领域 |
研究对象 | 基础科学、技术科学和工程科学 | 国防科技, 军事技术, 装备基础, 技术基础, 共性、通用、专用技术等等 |
认识内容 | 性质、特点、分类、体系结构、社会功能、发展规律、未来趋势 | 军事技术特点、发展规律, 关键技术识别, 颠覆性技术发现, 技术演化规律, 装备技术特性, 装备技术贡献度、成熟度, 科技人才发展规律等等 |
应用内容 | 制订科技发展战略、规划、政策以及对科学技术事业进行组织管理的原理、原则和方法 | 国防科技发展战略, 装备技术发展战略, 科技人才培养政策, 科技发展规划布局, 技术发展规划计划, 科技资源配置、技术项目管理等等 |
1 | 孟小峰, 慈祥. 大数据管理: 概念、技术与挑战[J]. 计算机研究与发展, 2013, 50 (1): 146- 169. |
MENG X F , CI X . Big data management: concepts, techniques and challenges[J]. Journal of Computer Research and Development, 2013, 50 (1): 146- 169. | |
2 |
GOLDSTON D . Big data: data wrangling[J]. Nature, 2008, 455 (7209): 15.
doi: 10.1038/455015a |
3 |
王鹏, 杨妹, 祝建成, 等. 面向数字孪生的动态数据驱动建模与仿真方法[J]. 系统工程与电子技术, 2020, 42 (12): 2779- 2786.
doi: 10.3969/j.issn.1001-506X.2020.12.14 |
WANG P , YANG M , ZHU J C , et al. Dynamic data driven modeling and simulation method for digital twin[J]. Journal of Systems Engineering and Electronics, 2020, 42 (12): 2779- 2786.
doi: 10.3969/j.issn.1001-506X.2020.12.14 |
|
4 | 谭跃进. 新兴信息技术下管理科学的创新思考[J]. 国防科技, 2015, 36 (3): 55- 58. |
TAN Y J . Innovation of management science with new information technology[J]. Defense Technology, 2015, 36 (3): 55- 58. | |
5 |
LI J C , YIN Y , FORTUNATO S , et al. Nobel laureates are almost the same as us[J]. Nature Reviews Physics, 2019, 1 (5): 301- 303.
doi: 10.1038/s42254-019-0057-z |
6 | OSOVSKA M , OSSOWSKI S . The science of science[J]. Studies in Science of Science, 2017, 35 (1): 11- 15. |
7 | Organization for Economic Cooperation and Development . Frascati manual 2015: guidelines for collecting and reporting data on research and experimental development[M]. Paris: OECD Publishing, 2015. |
8 | 李子彪, 梁博, 玄兆辉. 国际R&D经费统计规则变迁及对中国的启示——基于《弗拉斯卡蒂手册》第七版的分析[J]. 中国科技论坛, 2018, (6): 171- 178. |
LI Z B , LIANG B , XUAN Z H . Rules evolution of international R&D funding statistic and its implications to china—based on the analysis of frascati manual seventh edition[J]. Forum on Science and Technology in China, 2018, (6): 171- 178. | |
9 |
HARRISON K R , ELSAYED S , GARANOVICH I , et al. Portfolio optimization for defence applications[J]. IEEE Access, 2020, 8, 60152- 60178.
doi: 10.1109/ACCESS.2020.2983141 |
10 | RIEBE T , SCHMID S , REUTER C . Measuring spillover effects from defense to civilian sectors-a quantitative approach using LinkedIn[J]. Defence and Peace Economics, 2020, 32 (7): 773- 785. |
11 |
DURMAZ M . Defense technology development: does every country need an organization like DARPA?[J]. Innovation, 2016, 18 (1): 2- 12.
doi: 10.1080/14479338.2016.1163235 |
12 |
LEE J G , PARK M J . Rethinking the national defense R&D innovation system for latecomer: defense R&D governance matrix[J]. Technological Forecasting and Social Change, 2019, 146, 1- 11.
doi: 10.1016/j.techfore.2019.05.012 |
13 | 雷帅, 李晓松, 陈敬一. 系统动力学视角下国防科技信息工作体系建设研究[J]. 情报理论与实践, 2021, 44 (2): 103- 108. 103-108, 49 |
LEI S , LI X S , CHEN J Y . Research on national defense science and technology information research working system based on system dynamics[J]. Information Studies: Theory & Application, 2021, 44 (2): 103- 108. 103-108, 49 | |
14 |
戴少杰, 何隽. 国防科技重点实验室技术转移的制约因素及对策[J]. 科技管理研究, 2020, 40 (18): 120- 125.
doi: 10.3969/j.issn.1000-7695.2020.18.016 |
DAI S J , HE J . Constraints and countermeasures of technology transfer in key laboratory of national defense science and technology[J]. Science and Technology Management Research, 2020, 40 (18): 120- 125.
doi: 10.3969/j.issn.1000-7695.2020.18.016 |
|
15 | 王海涛, 刘瀚龙, 侯思微. 国防科技评估指标体系构建及相关研究综述[J]. 今日科苑, 2020, (10): 4- 10. |
WANG H T , LIU H L , HOU S W . A review of the construction of evaluation index and related research of national defense science and technology[J]. Modern Science, 2020, (10): 4- 10. | |
16 | 戴伟, 丁禹. 国防科技创新体系架构框架初探[J]. 科学管理研究, 2020, 38 (4): 22- 28. |
DAI W , DING Y . The initial exploration of national defense science and technology innovation architecture framework[J]. Scientific Management Research, 2020, 38 (4): 22- 28. | |
17 | 于成龙, 侯俊杰, 蒲洪波, 等. 新一代人工智能在国防科技领域发展探讨[J]. 国防科技, 2020, 41 (4): 13- 18. |
YU C L , HOU J J , PU H B , et al. Development of the new generation artificial intelligence in national defense science and technology[J]. Defense Technology, 2020, 41 (4): 13- 18. | |
18 | 农志明. 国防科技体系评价[J]. 国防科技, 2017, 38 (3): 12- 18. |
NONG Z M . Evaluation of the national defense science and technology system[J]. Defense Technology, 2017, 38 (3): 12- 18. | |
19 |
陈英武, 姜江. 关于体系与体系工程[J]. 国防科技, 2008, 29 (5): 30- 35.
doi: 10.3969/j.issn.1671-4547.2008.05.007 |
CHEN Y W , JIANG J . Research on system of systems and SOS engineering[J]. Defense Technology, 2008, 29 (5): 30- 35.
doi: 10.3969/j.issn.1671-4547.2008.05.007 |
|
20 |
BRANSDEN T , QUOC D , FARRELL D O , et al. The application of MBSE to inform workforce decision making[J]. INCOSE International Symposium, 2017, 27 (1): 386- 400.
doi: 10.1002/j.2334-5837.2017.00367.x |
21 |
梁杰, 谭跃进, 占国熊, 等. 基于DoDAF人因视图的武器装备体系结构建模方法[J]. 火力与指挥控制, 2017, 42 (2): 1- 5. 1-5, 10
doi: 10.3969/j.issn.1002-0640.2017.02.001 |
LIANG J , TAN Y J , ZHAN G X , et al. Modeling method of arms equipment architecture based on DoDAF human view[J]. Fire Control & Command Control, 2017, 42 (2): 1- 5. 1-5, 10
doi: 10.3969/j.issn.1002-0640.2017.02.001 |
|
22 | DoDAF Working Group. DoDAF (version2.02)[R]. USA: Department of Defense, 2011: 1-289. |
23 | 任长晟. 武器装备体系技术成熟度评估方法研究[D]. 长沙: 国防科技大学, 2010. |
REN C S. An evaluation approach for technology maturity of weapons system-of-systems[D]. Changsha: National University of Defense Technology, 2010. | |
24 | 游翰霖. 国防科技体系建模、结构分析与研发评估方法[D]. 长沙: 国防科技大学, 2017. |
YOU H L. Modeling, architecture analysis and development assessment approaches for defense technology system of systems[D]. Changsha: National University of Defense Technology, 2017. | |
25 | 陈燕. 信息系统体系结构框架研究综述[C]//2007年国防科技管理学术会议, 2008. |
CHEN Y. A review of research on the framework of information systems architecture[C]//Proc. of the National Defense Science and Technology Management Academic Conference, 2008. | |
26 | 常雷雷. 装备技术体系成熟度与满足度评估方法研究[D]. 长沙: 国防科技大学, 2014. |
CHANG L L. Readiness and satisfaction assessment approaches for technology system of systems[D]. Changsha: National University of Defense Technology, 2014. | |
27 | 李程阳. 装备技术体系网络建模及关键技术评估方法研究[D]. 长沙: 国防科技大学, 2014. |
LI C Y. Research on technology system-of-systems network modeling and key technology evaluation methods[D]. Changsha: National University of Defense Technology, 2014. | |
28 | 徐建国, 李孟军, 姜江. 数据驱动的技术创新网络模体分析[J]. 系统工程与电子技术, 2017, 39 (5): 1072- 1077. |
XU J G , LI M J , JIANG J . Data-driven motif analysis of technology breakthrough network[J]. Systems Engineering and Electronics, 2017, 39 (5): 1072- 1077. | |
29 | CHANG L, LI M T, BEN C, et al. Multi-view and network mode-ling for technology system of systems[C]//Proc. of the International Conference on System Science and Engineering, 2012. |
30 | 游翰霖, 李孟军, 姜江, 等. 装备技术体系网络模型与结构优化方法[J]. 国防科技大学学报, 2014, 36 (6): 123- 127. |
YOU H L , LI M J , JIANG J , et al. A network modeling and structure optimization approach for technology system of systems[J]. Journal of National University of Defense Technology, 2014, 36 (6): 123- 127. | |
31 | MANKINS J. Technology readiness levels: a white paper[R]. USA: NASA, 1995: 1-5. |
32 | MANKINS J. Research & development degree of difficulty (R&D3): a white paper[R]. USA: NASA, 1998: 1-3. |
33 | 罗吉利. 装备技术对体系能力的贡献度评估方法研究[D]. 长沙: 国防科技大学, 2015. |
LUO J L. A study on evaluation approaches for technology contribution rate for system of systems capability[D]. Changsha: National University of Defense Technology, 2015. | |
34 |
LI J C , ZHAO D , JIANG J , et al. Capability oriented equipment contribution analysis in temporal combat networks[J]. IEEE Trans.on Systems, Man, and Cybernetics: Systems, 2021, 51 (2): 696- 704.
doi: 10.1109/TSMC.2018.2882782 |
35 | 李际超, 杨克巍, 张小可, 等. 基于武器装备体系作战网络模型的装备贡献度评估[J]. 复杂系统与复杂性科学, 2016, 13 (3): 1- 7. |
LI J C , YANG K W , ZHANG X K , et al. Equipment contribution degree evaluation method based on combat network of weapon system-of-systems[J]. Complex Systems and Complexity Science, 2016, 13 (3): 1- 7. | |
36 | 李际超. 基于作战网络模型的装备体系贡献度研究[D]. 长沙: 国防科技大学, 2015. |
LI J C. Research on equipment contribution of weapon system-of-systems based on combat network model[D]. Changsha: National University of Defense Technology, 2015. | |
37 | 游雅倩, 姜江, 孙建彬, 等. 基于证据网络的装备体系贡献率评估方法研究[J]. 系统工程与电子技术, 2019, 41 (8): 1780- 1788. |
YOU Y Q , JIANG J , SUN J B , et al. Evidential network-based evaluation method of contribution to weapon system-of-systems[J]. Systems Engineering and Electronics, 2019, 41 (8): 1780- 1788. | |
38 | 徐建国. 装备技术体系实体识别及其影响预测方法[D]. 长沙: 国防科技大学, 2019. |
XU J G. Entities recognition and impact prediction approaches for technology system-of-systems[D]. Changsha: National University of Defense Technology, 2019. | |
39 | 徐建国, 李孟军, 姜江, 等. 预警作战体系超网络建模及结构分析[J]. 系统工程与电子技术, 2018, 40 (5): 1043- 1049. |
XU J G , LI M J , JIANG J , et al. Supernetwork modeling and structure analyzing for warning combat system[J]. Systems Engineering and Electronics, 2018, 40 (5): 1043- 1049. | |
40 | 徐建国. 基于超网络的装备技术体系结构演化与预测方法研究[D]. 长沙: 国防科技大学, 2016. |
XU J G. Structure evolution and prediction of technology system of systems based on supernetwork[D]. Changsha: National University of Defense Technology, 2016. | |
41 | 徐建国, 李孟军, 游翰霖, 等. 装备技术体系结构演化和超网络建模[J]. 国防科技, 2017, 38 (6): 52- 56. |
XU J G , LI M J , YOU H L , et al. Technical architecture evolution and supernetwork model of weapon system-of-systems[J]. Defense Technology, 2017, 38 (6): 52- 56. | |
42 |
WU L F , WANG D S , EVANS J A . Large teams develop and small teams disrupt science and technology[J]. Nature, 2019, 566 (7744): 378.
doi: 10.1038/s41586-019-0941-9 |
43 |
YOU H L , LI M J , YANG K W , et al. Development trend forecasting for coherent light generator technology based on patent citation network analysis[J]. Scientometrics, 2017, 111 (1): 297- 315.
doi: 10.1007/s11192-017-2252-y |
44 | 邹琪, 姜江, 游翰霖, 等. 国防专利体系建模与发展态势研究[J]. 科研管理, 2018, 39 (S1): 351- 358. |
ZOU Q , JIANG J , YOU H L , et al. A research on modeling and development of national defense patents[J]. Science Research Management, 2018, 39 (S1): 351- 358. |
[1] | 任天助, 辛万青, 严晞隽, 赵鸿宇, 黄辉. 改进的体系进化架构优化设计方法[J]. 系统工程与电子技术, 2021, 43(5): 1270-1276. |
[2] | 葛冰峰, 夏博远, 杨志伟, 赵青松, 魏河川. ExtendSim模型与数据驱动的指控流程建模与分析[J]. 系统工程与电子技术, 2020, 42(5): 1063-1072. |
[3] | 潘星, 张振宇, 张曼丽, 张国忠. 基于SoSE的装备体系RMS论证方法研究[J]. 系统工程与电子技术, 2019, 41(8): 1771-1779. |
[4] | 陈文英, 张兵志, 杨克巍. 支撑新型装备系统需求论证的体系贡献度评估[J]. 系统工程与电子技术, 2019, 41(8): 1795-1801. |
[5] | 杨克巍, 李明浩, 鲁延京, 赵青松 . 基于平行执行的装备体系涌现行为导向性方法[J]. Journal of Systems Engineering and Electronics, 2013, 35(6): 1218-1225. |
[6] | 陈文英, 张兵志, 谭跃进, 赵青松. 基于体系工程的武器装备体系需求论证[J]. Journal of Systems Engineering and Electronics, 2012, 34(12): 2479-2484. |
[7] | 赵峰,王书宁,杨克巍. 基于群体决策的装备重要性多想定空间分析[J]. Journal of Systems Engineering and Electronics, 2012, 34(11): 2264-2269. |
[8] | 杨磊, 武小悦. 装备综合试验与评价的技术需求及体系结构分析[J]. Journal of Systems Engineering and Electronics, 2011, 33(7): 1570-1574. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||