系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (6): 1839-1845.doi: 10.12305/j.issn.1001-506X.2022.06.09

• 传感器与信号处理 • 上一篇    下一篇

基于元学习的雷达小样本目标识别方法及改进

孙晶明1,2,*, 虞盛康1,2, 孙俊1,2   

  1. 1. 南京电子技术研究所, 江苏 南京 210039
    2. 中国电子科技集团公司智能感知技术重点实验室, 江苏 南京 210039
  • 收稿日期:2021-03-10 出版日期:2022-05-30 发布日期:2022-05-30
  • 通讯作者: 孙晶明
  • 作者简介:孙晶明(1984—), 男, 高级工程师, 博士, 主要研究方向为雷达目标识别、深度学习|虞盛康(1989—), 男, 高级工程师, 博士, 主要研究方向为雷达目标检测与识别、机器学习|孙俊(1974—), 男, 研究员级高级工程师, 博士, 主要研究方向为新体制雷达、雷达信号处理
  • 基金资助:
    国家自然科学基金(U19B2031)

Radar small sample target recognition method based on meta learning and its improvement

Jingming SUN1,2,*, Shengkang YU1,2, Jun SUN1,2   

  1. 1. Nanjing Research Institute of Electronics Technology, Nanjing 210039, China
    2. Key Laboratory of IntelliSense Technology, China Electronics Technology Group Corporation, Nanjing 210039, China
  • Received:2021-03-10 Online:2022-05-30 Published:2022-05-30
  • Contact: Jingming SUN

摘要:

基于深度学习的雷达目标识别方法近年来获得较大关注, 但实战中存在时效性约束和资源限制, 小样本识别难题大大限制其在实际识别任务中的性能。针对这一问题, 本文基于元学习算法, 通过从多个相关任务中学习到的元知识改善新任务的性能, 引入迁移学习思想, 提出一种改进的小样本学习方法, 并通过详细的性能对比实验分析了该方法的应用边界条件。基于实测高分辨距离像数据的实验结果表明, 元学习方法在历史积累样本所含目标类别较多, 与目标任务相关度较大的极小样本情况下, 性能优势才突出, 所提方法可显著提升其综合识别性能。

关键词: 雷达目标识别, 小样本识别, 元学习, 迁移学习, 高分辨距离像

Abstract:

In recent years, radar target recognition based on deep learning has received great attention. However, there are time constraints and resource constraints in actual combat, and the problem of small sample recognition greatly limits its performance in actual recognition tasks. To solve this problem, based on the meta learning algorithm, this paper improves the performance of new tasks by learning meta knowledge from multiple related tasks, introduces the idea of transfer learning, proposes an improved small sample learning method, and analyzes the application boundary conditions of the method through detailed performance comparison experiments. The experimental results based on the measured high resolution range profile data show that the performance advantage of meta learning method is outstanding only when there are many target categories in the historical accumulated samples and in the case of minimal samples with high correlation with the target task, the proposed method can significantly improve its comprehensive recognition performance.

Key words: radar target recognition, small sample recognition, meta learning, transfer learning, high resolution range profile (HRRP)

中图分类号: