1 |
LONG T , LIANG Z N , LIU Q H . Advanced technology of high-resolution radar: target detection, tracking, imaging, and recognition[J]. Science China: Information Sciences, 2019, 62, 40301.
doi: 10.1007/s11432-018-9811-0
|
2 |
LIAO K , SI J X , ZHU F Q , et al. Radar HRRP target recognition based on concatenated deep neural networks[J]. IEEE Access, 2018, 6, 29211- 29218.
doi: 10.1109/ACCESS.2018.2842687
|
3 |
ZHAO F X , LIU Y X , HUO K , et al. Radar HRRP target recognition based on stacked autoencoder and extreme learning machine[J]. Sensors, 2018, 18 (2): 173- 187.
doi: 10.3390/s18010173
|
4 |
WAN J W , CHEN B , XU B , et al. Convolutional neural networks for radar HRRP target recognition and rejection[J]. EURASIP Journal on Advances in Signal Processing, 2019,
|
5 |
GUO C , HE Y , WANG H P , et al. Radar HRRP target recognition based on deep one-dimensional residual-inception network[J]. IEEE Access, 2019, 7, 9191- 9204.
doi: 10.1109/ACCESS.2019.2891594
|
6 |
XU B , CHEN B , WAN J W , et al. Target-aware recurrent attentional network for radar HRRP target recognition[J]. Signal Processing, 2019, 155, 268- 280.
doi: 10.1016/j.sigpro.2018.09.041
|
7 |
DU C , CHEN B , XU B , et al. Factorized discriminative conditional variational auto-encoder for radar HRRP target recognition[J]. Signal Processing, 2019, 158, 176- 189.
doi: 10.1016/j.sigpro.2019.01.006
|
8 |
袁家雯, 刘文波, 张弓. 基于统计建模的字典学习算法在HRRP的应用[J]. 系统工程与电子技术, 2018, 40 (4): 762- 767.
|
|
YUAN J W , LIU W B , ZHANG G . Application of dictionary learning algorithm in HRRP based on statistical modeling[J]. Systems Engineering and Electronics, 2018, 40 (4): 762- 767.
|
9 |
王彩云, 胡允侃, 李晓飞, 等. 基于卷积稀疏编码与多分类器融合的雷达HRRP目标识别方法[J]. 系统工程与电子技术, 2018, 40 (11): 2433- 2437.
doi: 10.3969/j.issn.1001-506X.2018.11.07
|
|
WANG C Y , HU Y K , LI X F , et al. Radar HRRP target recognition based on convolutional sparse coding and multi-classifier fusion[J]. Systems Engineering and Electronics, 2018, 40 (11): 2433- 2437.
doi: 10.3969/j.issn.1001-506X.2018.11.07
|
10 |
潘宗序, 安全智, 张冰尘. 基于深度学习的雷达图像目标识别研究进展[J]. 中国科学: 信息科学, 2019, 49 (12): 1626- 1639.
|
|
PAN Z X , AN Q Z , ZHANG B C . Progress of deep learning-based target recognition in radar images[J]. Scientia Sinica Informationis, 2019, 49 (12): 1626- 1639.
|
11 |
韩磊, 姚璐. HRRP自动目标识别方法综述[J]. 北京理工大学学报, 2020, 40 (4): 351- 361.
|
|
HAN L , YAO L . A review of methods for HRRP target automatic recognition[J]. Transactions of Beijing Institute of Technology, 2020, 40 (4): 351- 361.
|
12 |
朱克凡, 王杰贵. 小样本条件下SCGAN+CNN低分辨雷达目标一步识别算法[J]. 系统工程与电子技术, 2020, 42 (1): 67- 75.
|
|
ZHU K F , WANG J G . Low-resolution radar target one-step recognition algorithm based on SCGAN+CNN with a limited training data[J]. Systems Engineering and Electronics, 2020, 42 (1): 67- 75.
|
13 |
朱克凡, 王杰贵, 刘有军. 小样本条件下基于数据增强和WACGAN的雷达目标识别算法[J]. 电子学报, 2020, 48 (6): 1124- 1131.
doi: 10.3969/j.issn.0372-2112.2020.06.012
|
|
ZHU K F , WANG J G , LIU Y J . Radar target recognition algorithm based on data augmentation and WACGAN with a limited training data[J]. Acta Electronica Sinica, 2020, 48 (6): 1124- 1131.
doi: 10.3969/j.issn.0372-2112.2020.06.012
|
14 |
TAMAAZOUSTI Y , BORGNE H L , HUDELOT C , et al. Learning more universal representations for transfer-learning[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2020, 42 (9): 2212- 2224.
doi: 10.1109/TPAMI.2019.2913857
|
15 |
HE H , DU L , LIU Y , et al. Similarity preserving multi-task learning for radar target recognition[J]. Information Sciences, 2018, 436/437, 388- 402.
doi: 10.1016/j.ins.2018.01.031
|
16 |
WANG C W , PEI J F , WANG Z Y , et al. When deep learning meets multi-task learning in SAR ATR: simultaneous target recognition and segmentation[J]. Remote Sensing, 2020, 12 (23): 3863- 3870.
doi: 10.3390/rs12233863
|
17 |
HUANG Z L , PAN Z X , LEI B . What, where, and how to transfer in SAR target recognition based on deep CNNs[J]. IEEE Trans.on Geoscience and Remote Sensing, 2020, 58 (4): 2324- 2336.
doi: 10.1109/TGRS.2019.2947634
|
18 |
WEN Y , SHI L C , XU X , et al. HRRP target recognition with deep transfer learning[J]. IEEE Access, 2020, 8, 57859- 57867.
doi: 10.1109/ACCESS.2020.2981730
|
19 |
KHAN I , ZHANG X C , REHMAN M , et al. A literature survey and empirical study of meta-learning for classifier selection[J]. IEEE Access, 2020, 8, 10262- 10281.
doi: 10.1109/ACCESS.2020.2964726
|
20 |
YE H J , SHENG X R , ZHAN D C . Few-shot learning with adaptively initialized task optimizer: a practical meta-learning approach[J]. Machine Learning, 2020, 109 (3): 643- 664.
doi: 10.1007/s10994-019-05838-7
|
21 |
WANG K , ZHANG G , XU Y B , et al. SAR target recognition based on probabilistic meta-learning[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18 (4): 682- 686.
doi: 10.1109/LGRS.2020.2983988
|