系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (6): 1805-1822.doi: 10.12305/j.issn.1001-506X.2022.06.06

• 电子技术 • 上一篇    下一篇

基于孪生神经网络的目标跟踪算法进展研究

金国栋*, 薛远亮, 谭力宁, 许剑锟   

  1. 火箭军工程大学核工程学院, 陕西 西安 710025
  • 收稿日期:2021-06-24 出版日期:2022-05-30 发布日期:2022-05-30
  • 通讯作者: 金国栋
  • 作者简介:金国栋 (1979-), 男, 副教授, 硕士研究生导师, 博士, 主要研究方向为人工智能、计算机视觉|薛远亮 (1996-), 男, 硕士研究生, 主要研究方向为目标检测、目标跟踪|谭力宁 (1985-), 男, 讲师, 博士, 主要研究方向为人工智能、计算机视觉|许剑锟 (1986-), 男, 硕士研究生, 主要研究方向为无人机目标定位
  • 基金资助:
    国家自然科学基金(61673017);国家自然科学基金(61403398)

Advances in object tracking algorithm based on siamese network

Guodong JIN*, Yuanliang XUE, Lining TAN, Jiankun XU   

  1. School of Nuclear Engineering, Rocket Force University of Engineering, Xi'an 710025, China
  • Received:2021-06-24 Online:2022-05-30 Published:2022-05-30
  • Contact: Guodong JIN

摘要:

目标跟踪作为计算机视觉领域的关键课题, 广泛应用在智能视频监控等领域。随着深度学习的迅速发展, 基于孪生神经网络的跟踪算法(简称为孪生跟踪算法)因其速度和精度的平衡优势成为了主流算法。尽管已有大量研究, 但仍缺乏从跟踪框架层面对孪生跟踪算法进行系统分析。为了梳理目前孪生跟踪算法的研究进展, 首先介绍了孪生跟踪算法的常见挑战、主要组成、跟踪流程、常用数据集和评价指标; 其次按照对跟踪框架的改进方向分为改进特征提取的算法、优化相似度计算的算法和优化跟踪结果的算法, 并分别详细介绍; 然后对20个主流跟踪算法进行测试与分析; 最后总结目前孪生跟踪算法存在的问题以及对未来的研究方向。

关键词: 目标跟踪, 深度学习, 孪生神经网络, 互相关运算, 区域建议网络

Abstract:

Object tracking, as a key topic in the field of computer vision, is widely used in fields such as intelligent video surveillance. With the rapid development of deep learning, the siamese neural network-based tracking algorithm (referred to as siamese tracking algorithm) becomes the mainstream algorithm due to its balanced advantages of speed and accuracy. Despite a large number of studies, there is still a lack of systematic analysis of siamese tracking algorithms from the level of the tracking framework. In order to sort out the current research progress of siamese tracking algorithms, the common challenges, main components, tracking process, common datasets and evaluation indexes of siamese tracking algorithms are firstly introduced. Secondly, the algorithms are divided into algorithms for improving feature extraction, algorithms for optimizing similarity calculation, and algorithms for optimizing tracking results according to the improvement direction of the tracking framework, and they are introduced in detail respectively. Then 20 mainstream tracking algorithms are tested and analyzed. Finally, we summarize the problems of current siamese tracking algorithms and future research directions.

Key words: object tracking, deep learning, siamese neural network, cross correlation, region proposal network (RPN)

中图分类号: