系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (6): 1805-1822.doi: 10.12305/j.issn.1001-506X.2022.06.06
金国栋*, 薛远亮, 谭力宁, 许剑锟
收稿日期:
2021-06-24
出版日期:
2022-05-30
发布日期:
2022-05-30
通讯作者:
金国栋
作者简介:
金国栋 (1979-), 男, 副教授, 硕士研究生导师, 博士, 主要研究方向为人工智能、计算机视觉|薛远亮 (1996-), 男, 硕士研究生, 主要研究方向为目标检测、目标跟踪|谭力宁 (1985-), 男, 讲师, 博士, 主要研究方向为人工智能、计算机视觉|许剑锟 (1986-), 男, 硕士研究生, 主要研究方向为无人机目标定位
基金资助:
Guodong JIN*, Yuanliang XUE, Lining TAN, Jiankun XU
Received:
2021-06-24
Online:
2022-05-30
Published:
2022-05-30
Contact:
Guodong JIN
摘要:
目标跟踪作为计算机视觉领域的关键课题, 广泛应用在智能视频监控等领域。随着深度学习的迅速发展, 基于孪生神经网络的跟踪算法(简称为孪生跟踪算法)因其速度和精度的平衡优势成为了主流算法。尽管已有大量研究, 但仍缺乏从跟踪框架层面对孪生跟踪算法进行系统分析。为了梳理目前孪生跟踪算法的研究进展, 首先介绍了孪生跟踪算法的常见挑战、主要组成、跟踪流程、常用数据集和评价指标; 其次按照对跟踪框架的改进方向分为改进特征提取的算法、优化相似度计算的算法和优化跟踪结果的算法, 并分别详细介绍; 然后对20个主流跟踪算法进行测试与分析; 最后总结目前孪生跟踪算法存在的问题以及对未来的研究方向。
中图分类号:
金国栋, 薛远亮, 谭力宁, 许剑锟. 基于孪生神经网络的目标跟踪算法进展研究[J]. 系统工程与电子技术, 2022, 44(6): 1805-1822.
Guodong JIN, Yuanliang XUE, Lining TAN, Jiankun XU. Advances in object tracking algorithm based on siamese network[J]. Systems Engineering and Electronics, 2022, 44(6): 1805-1822.
表1
主要测试集"
数据集 | 年份 | 平台 | 目标类别/个 | 序列数量/个 | 平均时长/帧 | 用途 | 备注 |
OTB2013 | 2013 | 地面 | 10 | 50 | 578 | 短时跟踪 | - |
OTB2015 | 2015 | 地面 | 22 | 100 | 590 | 短时跟踪 | - |
VOT2013 | 2013 | 地面 | - | 16 | - | 短时跟踪 | - |
VOT2014 | 2014 | 地面 | 11 | 25 | 416 | 短时跟踪 | 多边形标注 |
VOT2015 | 2015 | 地面 | - | 60 | 365 | 短时跟踪 | 失败时重置机制, 旋转标注 |
VOT2016 | 2016 | 地面 | - | 60 | 357 | 短时跟踪 | 掩膜分割标注, 包含热成像 |
VOT2017 | 2017 | 地面 | 24 | 60 | 356 | 短时跟踪 | 包含热成像 |
VOT2018 | 2018 | 地面 | 24 | 60 | 356 | 短时跟踪 | 旋转标注 |
VOT2018-LT | 2018 | 地面 | - | 35 | 420 | 长时跟踪 | 数据集为LTB35 |
VOT2019 | 2019 | 地面 | 30 | 60 | - | 短时跟踪 | - |
VOT2019-LT | 2019 | 地面 | - | 50 | 4 305 | 长时跟踪 | 数据集为LTB50 |
VOT2020 | 2020 | 地面 | 30 | 60 | - | 短时跟踪 | - |
VOT2020-LT | 2020 | 地面 | - | 50 | 4 305 | 长时跟踪 | 数据集为LTB50 |
ALOV300++ | 2013 | 地面 | 59 | 314 | 483 | 短时跟踪 | - |
NUS-PRO | 2015 | 地面 | 12 | 365 | 371 | 短时跟踪 | - |
TColor-128 | 2015 | 地面 | 27 | 129 | 429 | 短时跟踪 | 基于颜色信息 |
TLP | 2017 | 地面 | - | 50 | 13 520 | 长时跟踪 | - |
Nfs | 2017 | 地面 | 33 | 100 | 3 830 | 短期跟踪 | - |
LTB35 | 2018 | 地面 | - | 35 | 420 | 长时跟踪 | - |
LTB50 | 2018 | 地面 | - | 50 | 4 305 | 长时跟踪 | - |
OxUvA | 2018 | 地面 | 22 | 366 | 4 098 | 长时跟踪 | - |
TrackingNet(test) | 2018 | 地面 | 27 | 511 | 441 | 短时+长时跟踪 | - |
GOT-10k(test) | 2019 | 地面 | 84 | 420 | - | 短时跟踪 | - |
LaSOT | 2019 | 地面 | 70 | 1 400 | 2 506 | 长时跟踪 | - |
Small90/112 | 2019 | 地面, 无人机 | - | 90/112 | - | 短时跟踪 | 小目标跟踪数据集 |
HOB | 2020 | 地面 | - | 20 | 2 760 | 长时跟踪 | 遮挡数据集 |
ROB | 2021 | 地面 | 15 | 35 | 286 | 短时跟踪 | 旋转处理的数据集 |
TNL2K | 2021 | 地面 | - | 2 000 | 622 | 短时+长时跟踪 | 自然语言和边界框双重标签 |
UAV123 | 2016 | 无人机 | 9 | 123 | 915 | 短时跟踪 | - |
UAV20L | 2016 | 无人机 | 5 | 20 | 2 934 | 长时跟踪 | - |
DTB70 | 2017 | 无人机 | 15 | 70 | 225 | 短时跟踪 | - |
UAVDT | 2018 | 无人机 | - | 100 | 778 | 短时跟踪 | - |
VisDrone2019-SOT | 2019 | 无人机 | - | 132 | 833 | 短时跟踪 | 竞赛数据集 |
UAVDark135 | 2021 | 无人机 | - | 135 | 929 | 短时跟踪 | 夜间跟踪数据集 |
表2
算法在OTB2015上的具体性能对比"
算法 | 成功率 | 准确率 | 速度/FPS | 使用特征 |
SiamAttn | 0.712① | 0.926① | 45 | CNN |
SiamR-CNN | 0.700② | 0.891 | 5 | CNN |
SiamCAR | 0.697③ | 0.910③ | 52 | CNN |
MDNet | 0.678 | 0.909 | 1 | CNN |
SiamDWrpn | 0.672 | 0.922② | 13 | CNN |
SiamRPN++ | 0.666 | 0.879 | 35 | CNN |
DaSiamRPN | 0.658 | 0.880 | 160① | CNN |
GradNet | 0.639 | 0.861 | 80 | CNN |
DeepSRDCF | 0.635 | 0.851 | - | CNN+HOG |
SiamRPN | 0.629 | 0.847 | 160① | CNN |
SiamDWfc | 0.627 | 0.828 | 93③ | CNN |
SRDCF | 0.598 | 0.789 | 5.6 | HOG |
CFNet | 0.587 | 0.778 | 75 | CNN |
SiamFC | 0.587 | 0.772 | 58 | CNN |
Staple | 0.578 | 0.783 | 80 | CH |
MEEM | 0.539 | 0.796 | 10 | CN |
SAMF | 0.535 | 0.742 | 7 | Gray+HOG+CN |
fDSST | 0.517 | 0.686 | 54.3 | HOG+Gray |
DSST | 0.470 | 0.693 | 24 | HOG |
Struck | 0.429 | 0.584 | 125② | Haar+Gray |
1 |
YANG H X , SHAO L , ZHENG F , et al. Recent advances and trends in visual tracking: a review[J]. Neurocomputing, 2011, 74 (18): 3823- 3831.
doi: 10.1016/j.neucom.2011.07.024 |
2 | 裴巧娜. 基于光流法的运动目标检测与跟踪技术[D]. 北京: 北方工业大学, 2009. |
PEI Q N. Moving objects detection and tracking techniques based optical flow[D]. Beijing: North China University of Technology, 2009. | |
3 | 李雨石. 基于卡尔曼滤波器的无人机地面目标跟踪[D]. 天津: 中国民航大学, 2012. |
LI Y S. Ground target tracking with UAV based on Kalman filter[D]. Tianjin: Civil Aviation University of China, 2012. | |
4 | 李冠彬, 吴贺丰. 基于颜色纹理直方图的带权分块均值漂移目标跟踪算法[J]. 计算机辅助设计与图形学学报, 2011, 23 (12): 2059- 2066. |
LI G B , WU H F . Weighted fragments-based meanshift tracking using color-texture histogram[J]. Journal of Computer-Aided Design and Computer Graphics, 2011, 23 (12): 2059- 2066. | |
5 | DU K, JU Y F, JIN Y L, et al. Object tracking based on improved MeanShift and SIFT[C]//Proc. of the 2nd International Conference on Consumer Electronics, Communications and Networks, 2012: 2716-2719. |
6 | EXNER D, BRUNS E, KURZ D, et al. Fast and robust CAMShift tracking[C]//Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2010: 9-16. |
7 | 孟琭, 杨旭. 目标跟踪算法综述[J]. 自动化学报, 2019, 45 (7): 1244- 1260. |
MENG L , YANG X . A survey of object tracking algorithms[J]. Acta Automatica Sinica, 2019, 45 (7): 1244- 1260. | |
8 | BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]//Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010: 2544-2550. |
9 |
HENRIQUES J F , CASEIRO R , MARTINS P , et al. High-speed tracking with kernelized correlation filters[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2015, 37 (3): 583- 596.
doi: 10.1109/TPAMI.2014.2345390 |
10 | LI Y, ZHU J K. A scale adaptive kernel correlation filter tracker with feature integration[C]//Proc. of the European Conference on Computer Vision, 2015: 254-265. |
11 | DANELLJAN M, HAGER G, KHAN F S, et al. Accurate scale estimation for robust visual tracking[C]//Proc. of the British Machine Vision Conference, 2014. |
12 | DANELLJAN M, HAGER G, KHAN F S, et al. Learning spatially regularized correlation filters for visual tracking[C]//Proc. of the IEEE International Conference on Computer Vision, 2015: 4310-4318. |
13 |
O'ROURKE S , HERSKOWITZ I , O'SHEA E . Yeast go the whole HOG for the hyperosmotic response[J]. Trends in genetics, 2002, 18, 405- 412.
doi: 10.1016/S0168-9525(02)02723-3 |
14 | BIBI A, MUELLER M, GHANEM B. Target response adaptation for correlation filter tracking[C]//Proc. of the European Conference on Computer Vision, 2016: 419-433. |
15 | DANELLJAN M, HAGER G, KHAN F S, et al. Convolutional features for correlation filter based visual tracking[C]//Proc. of the IEEE International Conference on Computer Vision Workshop, 2015: 621-629. |
16 | DANELLJAN M, ROBINSON A, SHAHBAZ K F, et al. Beyond correlation filters: learning continuous convolution operators for visual tracking[C]//Proc. of the European Conference on Computer Vision, 2016: 472-488. |
17 | NAM H, HAN B Y. Learning multi-domain convolutional neural networks for visual tracking[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 4293-4302. |
18 | TAO R, GAVVES E, SMEULDERS A W M. Siamese instance search for tracking[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1420-1429. |
19 |
BROMLEY J , BENTZ J W , BOTTOU L , et al. Signature verification using a "siamese" time delay neural network[J]. International Journal of Pattern Recognition and Artificial Intelligence, 1993, 7 (4): 669- 688.
doi: 10.1142/S0218001493000339 |
20 | CHOPRA S, HADSELL R, LECUN Y. Learning a similarity metric discriminatively, with application to face verification[C]//Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, 531(1): 539-546. |
21 | TAIGMAN Y, YANG M, RANZATO M, et al. DeepFace: closing the gap to human-level performance in face verification[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 1701-1708. |
22 | LIN T Y, YIN C, BELONGIE S, et al. Learning deep representations for ground-to-aerial geolocalization[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 5007-5015. |
23 | BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional siamese networks for object tracking[C]//Proc. of the European Conference on Computer Vision, 2016: 850-865. |
24 |
RUSSAKOVSKY O , DENG J , SU H , et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115 (3): 211- 252.
doi: 10.1007/s11263-015-0816-y |
25 | ESTEBAN R, JONATHON S, STEFANO M, et al. YouTube-BoundingBoxes: a large high-precision human-annotated data set for object detection in video[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7464-7473. |
26 | LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proc. of the European Conference on Computer Vision, 2014: 740-755. |
27 |
HUANGL H , ZHAO X , HUANG K Q . GOT-10k: a large high-diversity benchmark for generic object tracking in the wild[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2021, 43 (5): 1562- 1577.
doi: 10.1109/TPAMI.2019.2957464 |
28 | FAN H, LIN L B, YANG F T, et al. LaSOT: a high-quality benchmark for large-scale single object tracking[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 5369-5378. |
29 | MULLER M, BIBI A, GIANCOLA S, et al. TrackingNet: a large-scale dataset and benchmark for object tracking in the wild[C]//Proc. of the European Conference on Computer Vision, 2018: 310-327. |
30 | XU N, YANG L J, FAN Y C, et al. YouTube-VOS: sequence-to-sequence video object segmentation[C]//Proc. of the European Conference on Computer Vision, 2018: 603-619. |
31 | WU Y, LIM J W, YANG M H. Online object tracking: a benchmark[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2013: 2411-2418. |
32 |
WU Y , LIM J W , YANG M H . Object tracking benchmark[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2015, 37 (9): 1834- 1848.
doi: 10.1109/TPAMI.2014.2388226 |
33 | KRISTAN M, PFLUGFELDER R, LEONARDIS A, et al. The VOT2013 challenge: overview and additional results[C]//Proc. of the 19th Computer Vision Winter Workshop, 2014. |
34 | KRISTAN M, PFLUGFELDER R, LEONARDIS A, et al. The visual object tracking VOT2014 challenge results[C]//Proc. of the Computer Vision-ECCV Workshops, 2015: 191-217. |
35 | KRISTAN M, MATAS J, LEONARDIS A, et al. The visual object tracking VOT2015 challenge results[C]//Proc. of the IEEE International Conference on Computer Vision Workshop, 2015: 564-586. |
36 | BATTISTONE F, SANTOPIETRO V, PETROSINO A. The visual object tracking VOT2016 challenge results[C]//Proc. of the European Conference on Computer Vision, 2016: 777-823. |
37 | KRISTAN M, LEONARDIS A, MATAS J, et al. The visual object tracking VOT2017 challenge results[C]//Proc. of the IEEE International Conference on Computer Vision Workshops, 2017: 1949-1972. |
38 | KRISTAN M, LEONARDIS A, MATAS J, et al. The sixth visual object tracking VOT2018 challenge results[C]//Proc. of the European Conference on Computer Vision, 2019. |
39 | KRISTAN M, MATAS J, LEONARDIS A, et al. The 7th visual object tracking VOT2019 challenge results[C]//Proc. of the IEEE/CVF International Conference on Computer Vision Workshop, 2019: 2206-2241. |
40 | KRISTAN M, LEONARDIS A, MATAS J, et al. The eighth visual object tracking VOT2020 challenge results[C]//Proc. of the European Conference on Computer Vision, 2020: 547-601. |
41 |
SMEULDERS A W M , CHU D M , CUCCHIARA R , et al. Visual tracking: an experimental survey[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2014, 36 (7): 1442- 1468.
doi: 10.1109/TPAMI.2013.230 |
42 |
LI A N , LIN M , WU Y , et al. NUS-PRO: a new visual tracking challenge[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2016, 38 (2): 335- 349.
doi: 10.1109/TPAMI.2015.2417577 |
43 |
LIANG P , BLASCH E , LING H . Encoding color information for visual tracking: algorithms and benchmark[J]. IEEE Trans.on Image Processing, 2015, 24 (12): 5630- 5644.
doi: 10.1109/TIP.2015.2482905 |
44 | MOUDGIL A, GANDHI V. Long-term visual object tracking benchmark[C]//Proc. of the Computer Vision-ACCV, 2019: 629-645. |
45 | GALOOGAHI H K, FAGG A, HUANG C, et al. Need for speed: a benchmark for higher frame rate object tracking[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1125-1134. |
46 | LUKF I A, ZAJC L, VOJIR T, et al. Now you see me: evaluating performance in long-term visual tracking[EB/OL]. [2021-06-24]. https://arxiv.org/abs/1804.07056. |
47 | VALMADRE J, BERTINETTO L, HENRIQUES J F, et al. Long-term tracking in the wild: a benchmark[EB/OL]. [2021-06-24]. https://arxiv.org/abs/1803.09502. |
48 |
LIU C L , DING W R , YANG J Y , et al. Aggregation signature for small object tracking[J]. IEEE Trans.on Image Processing, 2020, 29, 1738- 1747.
doi: 10.1109/TIP.2019.2940477 |
49 | KUIPERS T P, ARYA D, GUPTA D K. Hard occlusions in visual object tracking[C]//Proc. of the Computer Vision-ECCV 2020 Workshops, 2020: 299-314. |
50 | GUPTA D K, ARYA D, GAVVES E J A. Rotation equivariant siamese networks for tracking[EB/OL]. [2021-06-24]. https://arxiv.org/abs/2012.13078. |
51 | WANG X, SHU X J, ZHANG Z P, et al. Towards more flexible and accurate object tracking with natural language: algorithms and benchmark[C]//Proc. of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13763-13773. |
52 | MUELLER M, SMITH N, GHANEM B. A benchmark and simulator for UAV tracking[C]//Proc. of the European Conference on Computer Vision, 2016: 445-461. |
53 | LI S Y, YEUNG D Y. Visual object tracking for unmanned aerial vehicles: a benchmark and new motion models[C]//Proc. of the 31st AAAI Conference on Artificial Intelligence, 2017: 4140-4146. |
54 | DU D W, QI Y K, YU H Y, et al. The unmanned aerial vehicle benchmark: object detection and tracking[C]//Proc. of the European Conference on Computer Vision, 2018: 370-386. |
55 | DU D W, ZHU P F, WEN L Y, et al. VisDrone-SOT2019: the vision meets drone single object tracking challenge results[C]//Proc. of the IEEE/CVF International Conference on Computer Vision Workshop, 2019: 199-212. |
56 | LI B W, FU C H, DING F Q, et al. All-day object tracking for unmanned aerial vehicle[EB/OL]. [2021-06-24]. https://arxiv.org/abs/2101.08446. |
57 |
EVERINGHAM M , VAN GOOL L , WILLIAMS C K I , et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88 (2): 303- 338.
doi: 10.1007/s11263-009-0275-4 |
58 | YANG M, ZHANG C X, WU Y, et al. Robust object tracking via online multiple instance metric learning[C]//Proc. of the IEEE International Conference on Multimedia and Expo Workshops, 2013. |
59 | HENRIQUES J F , CASEIRO R , MARTINS P , et al. Exploiting the circulant structure of tracking-by-detection with kernels[M]. Berlin: Springer, 2012: 702- 715. |
60 | WANG L J, OUYANG W L, WANG X G, et al. Visual tracking with fully convolutional networks[C]//Proc. of the IEEE International Conference on Computer Vision, 2015: 3119-3127. |
61 | VALMADRE J, BERTINETTO L, HENRIQUES J, et al. End-to-End representation learning for correlation filter based tracking[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 5000-5008. |
62 | HUANG C, LUCEY S, RAMANAN D. Learning policies for adaptive tracking with deep feature cascades[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 105-114. |
63 | HE A F, LUO C, TIAN X M, et al. A twofold siamese network for real-time object tracking[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 4834-4843. |
64 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. |
65 | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proc. of the Computer Vision and Pattern Re-cognition, 2015. |
66 | ZHANG Z P, PENG H W. Deeper and wider siamese networks for real-time visual tracking[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 4586-4595. |
67 | LI B, WU W, WANG Q, et al. SiamRPN++: evolution of siamese visual tracking with very deep networks[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 4277-4286. |
68 | LI B, YAN J J, WU W, et al. High performance visual tracking with siamese region proposal network[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 8971-8980. |
69 | LI Y H, ZHANG X F. SiamVGG: visual tracking using deeper siamese networks[EB/OL]. [2021-06-24]. https://arxiv.org/abs/1902.02804. |
70 | ALEX K, ILYA S, GEOFFREY E H. ImageNet classification with deep convolutional neural networks[C]//Proc. of the Neural Information Processing Systems, 2012. |
71 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2021-06-24]. https://arxiv.org/abs/1409.1556. |
72 | YAN B, PENG H W, WU K, et al. LightTrack: finding lightweight neural networks for object tracking via one-shot architecture search[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 15180-15189. |
73 | HE A F, LUO C, TIAN X M, et al. Towards a better match in siamese network based visual object tracker[C]//Proc. of the European Conference on Computer Vision, 2019: 132-147. |
74 | ABDELPAKEY M H, SHEHATA M S, MOHAMED M M. DensSiam: end-to-end densely-siamese network with self-attention model for object tracking[C]//Proc. of the Advances in Visual Computing, 2018: 463-473. |
75 | SOSNOVIK I, MOSKALEV A, SMEULDERS A W M. Scale equivariance improves siamese tracking[EB/OL]. [2021-06-24]. https://arxiv.org/abs/2007.09115. |
76 | GUPTA D K, GAVVES E, SMEULDERS A J A. Tackling occlusion in siamese tracking with structured dropouts[EB/OL]. [2021-06-24]. https://arxiv.org/abs/2006.16571. |
77 | DIAOZ F. A single target tracking algorithm based on generative adversarial networks[EB/OL]. [2021-06-24]. https://arxiv.org/abs/1912.11967. |
78 | WANG Q, TENG Z, XING J L, et al. Learning attentions: residual attentional siamese network for high performance online visual tracking[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 4854-4863. |
79 | 蒲磊, 冯新喜, 侯志强, 等. 基于级联注意力机制的孪生网络视觉跟踪算法[J]. 北京航空航天大学学报, 2020, 46 (12): 2302- 2310. |
PU L , FENG X X , HOU Z Q , et al. Siamese network visual tracking algorithm based on cascaded attention mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46 (12): 2302- 2310. | |
80 | ZHANG Z P, LI B, HU W M, et al. Towards accurate pixel-wise object tracking by attention retrieval[EB/OL]. [2021-06-24]. https://arxiv.org/abs/2008.02745. |
81 | YU Y C, XIONG Y L, HUANG W L, et al. Deformable siamese attention networks for visual object tracking[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 6727-6736. |
82 | 柏罗, 张宏立, 王聪. 基于高效注意力和上下文感知的目标跟踪算法[J/OL]. 北京航空航天大学学报. https://doi.org/10.13700/j.bh.1001-5965.2021.0013. |
BAI L, ZHANG H L, WANG C. Target tracking algorithm based on efficient attention and context awareness[J/OL]. Journal of Beijing University of Aeronautics and Astronautics. https://doi.org/10.13700/j.bh.1001-5965.2021.0013. | |
83 | ZHENG Z, WANG Q, LI B, et al. Distractor-aware siamese networks for visual object tracking[C]//Proc. of the European Conference on Computer Vision, 2018: 101-117. |
84 | VOIGTLAENDER P, LUITEN J, TORR P H S, et al. Siam R-CNN: visual tracking by re-detection[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 6577-6587. |
85 | ZHANG J P, WANG Y H. Spatio-temporal matching for siamese visual tracking[EB/OL]. [2021-06-24]. https://arxiv.org/abs/2105.02408. |
86 | YAN B, WANG D, LU H C, et al. Alpha-Refine: boosting tracking performance by precise bounding box estimation[EB/OL]. [2021-06-24]. https://arxiv.org/abs/2007.02024. |
87 | WANG Z Q, XU J, LIU L, et al. RANet: ranking attention network for fast video object segmentation[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2019: 3977-3986. |
88 | GUO D Y, SHAO Y Y, CUI Y, et al. Graph attention tracking[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 9543-9552. |
89 | HAN W C, DONG X P, KHAN F, et al. Learning to fuse asymmetric feature maps in siamese trackers[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 16570-16580. |
90 | 赵洲, 黄攀峰, 陈路. 一种融合卡尔曼滤波的改进时空上下文跟踪算法[J]. 航空学报, 2017, 38 (2): 274- 284. |
ZHAO Z , HUANG P F , CHEN L . Atracking algorithm of improved spatio-temporal context with Kalman filter[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38 (2): 274- 284. | |
91 | LUKEZIC A, MATAS J, KRISTAN M. D3S-a discriminative single shot segmentation tracker[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 7131-7140. |
92 | DU F, LIU P, ZHAO W, et al. Correlation-guided attention for corner detection based visual tracking[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 6835-6844. |
93 | YANG K, HE Z Y, PEI W J, et al. SiamCorners: siamese corner networks for visual tracking[J/OL]. IEEE Trans. on Multimedia, 2022, 24: 1956-1967. |
94 | DANELLJAN M, BHAT G, KHAN F S, et al. ATOM: accurate tracking by overlap maximization[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 4655-4664. |
95 | YUAN D, CHANG X J, HE Z Y. Accurate bounding-box regression with distance-IOU loss for visual tracking[EB/OL]. [2021-06-24]. https://arxiv.org/abs/2007.01864. |
96 | CHOI J, KWON J, LEE K M. Visual tracking by tridentalign and context embedding[C]//Proc. of the Computer Vision-ACCV 2020, 2020. |
97 | HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 2980-2988. |
98 | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Proc. of the Neural Information Processing Systems, 2015: 91-99. |
99 | 崔洲涓, 安军社, 张羽丰, 等. 面向无人机的轻量级Siamese注意力网络目标跟踪[J]. 光学学报, 2020, 40 (19): 132- 144. |
CUI Z J , AN J S , ZHANG Y F , et al. Light-weight siamese attention network object tracking for unmanned aerial vehicle[J]. Acta Optica Sinica, 2020, 40 (19): 132- 144. | |
100 | 刘芳, 杨安喆, 吴志威. 基于自适应Siamese网络的无人机目标跟踪算法[J]. 航空学报, 2020, 41 (1): 243- 255. |
LIU F , YANG A Z , WU Z W . Adaptive siamese network based UAV target tracking algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41 (1): 243- 255. | |
101 | FAN H, LING H B. Siamese cascaded region proposal networks for real-time visual tracking[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 7944-7953. |
102 | ZHOU W Z, WEN L Y, ZHANG L B, et al. SiamMan: siamese motion-aware network for visual tracking[EB/OL]. [2021-06-24]. https://arxiv.org/abs/1912.05515. |
103 | YANG T Y, XU P F, HU R B, et al. ROAM: recurrently optimizing tracking model[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 6717-6726. |
104 | PENG J L, JIANG Z K, GU Y Y, et al. SiamRCR: reciprocal classification and regression for visual object tracking[EB/OL]. [2021-06-24]. https://arxiv.org/abs/2105.11237. |
105 | 石国强, 赵霞. 基于联合优化的强耦合孪生区域推荐网络的目标跟踪算法[J]. 计算机应用, 2020, 40 (10): 2822- 2830. |
SHI G Q , ZHAO X . Object tracking algorithm based on jointly-optimized strong-coupled siamese region proposal network[J]. Journal of Computer Applications, 2020, 40 (10): 2822- 2830. | |
106 | CHENG S Y, ZHONG B N, LI G R, et al. Learning to filter: siamese relation network for robust tracking[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 4421-4431. |
107 | CHEN Z D, ZHONG B N, LI G R, et al. Siamese box adaptive network for visual tracking[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 6667-6676. |
108 | GUO D Y, WANG J, CUI Y, et al. SiamCAR: siamese fully convolutional classification and regression for visual tracking[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 6268-6276. |
109 | XU Y D , WANG Z Y , LI Z X , et al. SiamFC++: towards robust and accurate visual tracking with target estimation guidelines[J]. AAAI/Association for the Advancement of Artificial Intelligence, 2020, 34 (7): 12549- 12556. |
110 | ZHANG Z P, PENG H W, FU J L, et al. Ocean: object-aware anchor-free tracking[EB/OL]. [2021-06-24]. https://arxiv.org/abs/2006.10721. |
111 | WANG Q, ZHANG L, BERTINETTO L, et al. Fast online object tracking and segmentation: a unifying approach[C]//Proc. of the IEEE/CVF Conference on Computer Vision Pattern Recognition, 2019: 1328-1338. |
112 | ZHANG Z P, LI B, HU W M, et al. Towards accurate pixel-wise object tracking by attention retrieval[EB/OL]. [2021-06-24]. https://arxiv.org/abs/2008.02745. |
113 |
WAN M J , GU G H , QIAN W X , et al. Unmanned aerial vehicle video-based target tracking algorithm using sparse representation[J]. IEEE Internet of Things Journal, 2019, 6 (6): 9689- 9706.
doi: 10.1109/JIOT.2019.2930656 |
114 | YANG T Y, CHAN A B. Learning dynamic memory networks for object tracking[C]//Proc. of the Computer Vision-ECCV, 2018: 153-169. |
115 | FU Z, LIU Q J, FU Z H, et al. STMTrack: template-free visual tracking with space-time memory networks[EB/OL]. [2021-06-24]. https://arxiv.org/abs/2104.00324. |
116 | GAO J, HU W M, LU Y. Recursive least-squares estimator-aided online learning for visual tracking[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 7384-7393. |
117 | ZHOU J H, LI B, WANG P, et al. Real-time visual object tracking via few-shot learning[EB/OL]. [2021-06-24]. https://arxiv.org/abs/2103.10130. |
118 | GUO Q, FENG W, ZHOU C, et al. Learning dynamic siamese network for visual object tracking[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 1781-1789. |
119 | LI P X, CHEN B Y, OUYANG W L, et al. GradNet: gradient-guided network for visual object tracking[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2019: 6161-6170. |
120 | SUN M J, XIAO J M, LIM E G, et al. Fast template matching and update for video object tracking and segmentation[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10788-10796. |
121 | BHAT G, DANELLJAN M, GOOL L V, et al. Learning discriminative model prediction for tracking[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2019: 6181-6190. |
122 | DAI K N, ZHANG Y H, WANG D, et al. High-performance long-term tracking with meta-updater[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 6297-6306. |
123 | ZHOU J H, LI B, QIAO L, et al. Higher performance visual tracking with dual-modal localization[EB/OL]. [2021-06-24]. https://arxiv.org/abs/2103.10089. |
124 | 仇祝令, 查宇飞, 朱鹏, 等. 基于孪生神经网络在线判别特征的视觉跟踪算法[J]. 光学学报, 2019, 39 (9): 253- 261. |
QIU Z L , ZHA Y F , ZHU P , et al. Visual tracking algorithm based on online feature discrimination with siamese network[J]. Acta Optica Sinica, 2019, 39 (9): 253- 261. | |
125 | 姬张建, 任兴旺. 带旋转与尺度估计的全卷积孪生网络目标跟踪算法[J]. 计算机应用, 2021, 41 (9): 2705- 2711. |
JI Z J , REN X W . Object tracking algorithm of full-convolutional siamese networks with rotation and scale estimation[J]. Journal of Computer Applications, 2021, 41 (9): 2705- 2711. | |
126 | 高琳, 王俊峰, 范勇, 等. 基于卷积神经网络与一致性预测器的稳健视觉跟踪[J]. 光学学报, 2017, 37 (8): 229- 238. |
GAO L , WANG J F , FAN Y , et al. Robust visual tracking based on convolution neural networks and conformal predictor[J]. Acta Optica Sinica, 2017, 37 (8): 229- 238. | |
127 | ZHANG Z K, ZHONG B N, ZHANG S P, et al. Distractor-aware fast tracking via dynamic convolutions and MOT philosophy[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 1024-1033. |
128 | ZHANG J M, MA S G, SCLAROFF S. MEEM: robust tracking via multiple experts using entropy minimization[C]//Proc. of the European Conference on Computer Vision, 2014: 188-203. |
129 | BERTINETTO L, VALMADRE J, GOLODETZ S, et al. Staple: complementary learners for real-time tracking[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1401-1409. |
130 |
DANELLJAN M , HAGER G , KHAN F S , et al. Discriminative scale space tracking[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2017, 39 (8): 1561- 1575.
doi: 10.1109/TPAMI.2016.2609928 |
131 |
HARE S , GOLODETZ S , SAFFARI A , et al. Struck: structured output tracking with kernels[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2016, 38 (10): 2096- 2109.
doi: 10.1109/TPAMI.2015.2509974 |
132 | VASWANI A, SHAZEER N M, PARMAR N, et al. Attention is all you need[EB/OL]. [2021-06-24]. https://arxiv.org/abs/1706.03762. |
[1] | 韩啸, 陈世文, 陈蒙, 杨锦程. 基于互易点学习的LPI信号开集识别[J]. 系统工程与电子技术, 2022, 44(9): 2752-2759. |
[2] | 仇祝令, 查宇飞, 李振宇, 李禹铭, 张鹏, 朱川. 基于多模型蒸馏的时间正则化相关滤波跟踪算法[J]. 系统工程与电子技术, 2022, 44(8): 2448-2456. |
[3] | 侯子林, 程婷, 彭瀚. 基于量测转换序贯滤波的GMPHD机动目标跟踪[J]. 系统工程与电子技术, 2022, 44(8): 2474-2482. |
[4] | 张立民, 谭凯文, 闫文君, 张聿远. 基于多级跳线残差网络的雷达辐射源识别[J]. 系统工程与电子技术, 2022, 44(7): 2148-2156. |
[5] | 史浩然, 卢发兴, 祁江鑫, 杨光. 基于辅助信标的无人机协同目标跟踪[J]. 系统工程与电子技术, 2022, 44(7): 2302-2310. |
[6] | 翟光, 王妍欣, 孙一勇. 基于低轨星网的多目标协同跟踪滤波技术[J]. 系统工程与电子技术, 2022, 44(6): 1957-1967. |
[7] | 赵晓枫, 徐叶斌, 吴飞, 牛家辉, 蔡伟, 张志利. 基于全局感知机制的地面红外目标检测方法[J]. 系统工程与电子技术, 2022, 44(5): 1461-1467. |
[8] | 王帅, 向建军, 彭芳, 唐书娟. 基于新最速下降法的目标跟踪算法[J]. 系统工程与电子技术, 2022, 44(5): 1512-1519. |
[9] | 邹虹, 白陈阳, 何鹏, 崔亚平, 王汝言, 吴大鹏. 基于分布式深度学习的边缘服务放置策略[J]. 系统工程与电子技术, 2022, 44(5): 1728-1737. |
[10] | 辛怀声, 曹晨. 基于交互多模型的分组δ-广义标签多伯努利算法[J]. 系统工程与电子技术, 2022, 44(4): 1128-1138. |
[11] | 陈冬, 句彦伟. 基于语义分割实现的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2022, 44(4): 1195-1201. |
[12] | 孙晶明, 虞盛康, 孙俊. 基于深度学习的HRRP识别姿态敏感性分析[J]. 系统工程与电子技术, 2022, 44(3): 802-807. |
[13] | 谢家豪, 黄树彩, 韦道知, 张曌宇, 王文豪. 基于PEV准则的不确定混合多传感器联盟求解[J]. 系统工程与电子技术, 2022, 44(3): 819-826. |
[14] | 宋子壮, 杨嘉伟, 张东方, 王诗强, 张硕. 基于无锚框的红外多类别多目标实时跟踪网络[J]. 系统工程与电子技术, 2022, 44(2): 401-409. |
[15] | 姚云翔, 陈莹. 注意力机制下双模态交互融合的目标跟踪网络[J]. 系统工程与电子技术, 2022, 44(2): 410-419. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||