系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (6): 1765-1771.doi: 10.12305/j.issn.1001-506X.2022.06.01
• 电子技术 • 下一篇
袁文杰1, 郭琨毅1, 盛新庆1, 金从军2,*
收稿日期:
2021-06-21
出版日期:
2022-06-01
发布日期:
2022-05-30
通讯作者:
金从军
作者简介:
袁文杰(1996-), 女, 硕士研究生, 主要研究方向为散射中心参数化建模|郭琨毅(1976-), 女, 教授, 博士研究生导师, 博士, 主要研究方向为雷达目标特性、散射中心参数化建模|盛新庆(1968-), 男, 教授, 博士研究生导师, 博士, 主要研究方向为计算电磁学、目标电磁特性与隐身设计、复杂电磁环境仿真|金从军(1970-), 男, 研究员, 博士, 主要研究方向为射频仿真
基金资助:
Wenjie YUAN1, Kunyi GUO1, Xinqing SHENG1, Congjun JIN2,*
Received:
2021-06-21
Online:
2022-06-01
Published:
2022-05-30
Contact:
Congjun JIN
摘要:
复杂流线型目标通常包含多个滑动型散射中心(sliding scattering center, SSC)。由于SSC位置随观测方位变化而改变, 采用现有的散射中心建模方法所获得的SSC属性参数精度受到雷达图像分辨率、多散射中心图像混叠和参数估计精度的限制。本文提出一种基于表面电流相位特性的散射中心建模方法。该方法基于全波法计算的稀疏采样角度下的表面等效电流数据, 通过驻相点自适应提取、电流分区, 实现目标散射中心的参数化建模。驻相点自适应提取可以精确确定散射中心位置, 电流分区计算可以避免多散射中心成分混叠造成的参数提取困难, 从而保证了散射中心的建模精度。本文以某导弹和飞机模型为例, 采用全波法和传统方法建模计算结果对使用该方法建模的效率和精度进行了验证。
中图分类号:
袁文杰, 郭琨毅, 盛新庆, 金从军. 基于电流相位特性的滑动散射中心建模方法[J]. 系统工程与电子技术, 2022, 44(6): 1765-1771.
Wenjie YUAN, Kunyi GUO, Xinqing SHENG, Congjun JIN. Modeling method of sliding scattering center based on current phase characteristics[J]. Systems Engineering and Electronics, 2022, 44(6): 1765-1771.
1 | 黄培康. 雷达目标特征信号[M]. 北京: 中国宇航出版社, 1993. |
HUANG P K . Radar target characteristic signal[M]. Beijing: China Astronautic Publishing House, 1993. | |
2 |
YANG D W , NI W , DU L , et al. Efficient attributed scatter center extraction based on image-domain sparse representation[J]. IEEE Trans.on Signal Processing, 2020, 68, 4368- 4381.
doi: 10.1109/TSP.2020.3011332 |
3 | ABADPOUR S, DIEWALD A, PAULI M, et al. Extraction of scattering centers using a 77 GHz FMCW radar[C]//Proc. of the 12th German Microwave Conference, 2019. |
4 |
来雨. 基于属性散射中心的SAR图像重构及在目标识别中的应用[J]. 火力与指挥控制, 2021, 46 (2): 46- 52.
doi: 10.3969/j.issn.1002-0640.2021.02.008 |
LAI Y . SAR image reconstruction based on attribute scattering centers with application in target recognition[J]. Fire Control & Command Control, 2021, 46 (2): 46- 52.
doi: 10.3969/j.issn.1002-0640.2021.02.008 |
|
5 |
ZHOU J X , SHI Z G , CHENG X , et al. Automatic target recognition of SAR images based on global scattering center model[J]. IEEE Trans.on Geoscience and Remote Sensing, 2011, 49 (10): 3713- 3729.
doi: 10.1109/TGRS.2011.2162526 |
6 |
MA C H , WEN G J , HUANG X H , et al. Scatterer-based approach to evaluate similarity between 3D EM-model and 2D SAR data for ATR[J]. IET Radar Sonar Navigation, 2017, 11 (2): 254- 259.
doi: 10.1049/iet-rsn.2016.0123 |
7 | ZHAN R H, WANG L P, ZHANG J. Joint target tracking and classification with scattering center model for radar sensor[C]//Proc. of the International Conference on Control, Automation and Information Sciences, 2019. |
8 | POTTER L C , CHIANG D M , CARRIERE R , et al. A GTD-based parametric model for radar scattering[J]. IEEE Trans.on Antennas and Propagation, 1995, 46 (1): 1058- 1067. |
9 |
GUO K Y , LI Q F , SHENG X Q , et al. Sliding scattering center model for extended streamlined targets[J]. Progress in Electromagnetics Research, 2013, 139, 499- 516.
doi: 10.2528/PIER13032111 |
10 | 谢若晗, 何思远, 朱国强, 等. 基于目标属性散射中心模型的正向参数化建模[J]. 激光与光电子学进展, 2019, 56 (12): 207- 214. |
XIE R H , HE S Y , ZHU G Q , et al. Forward parametric modeling based on target attribute scattering center model[J]. Laser & Optoelectronics Progress, 2019, 56 (12): 207- 214. | |
11 | CHEN V C , LI F , HO S S , et al. Micro-Doppler effect in ra dar: phenomenon, model, and simulation study[J]. IEEE Trans.on Aerospace & Electronic Systems, 2006, 42 (1): 2- 21. |
12 | 张群, 胡健, 罗迎, 等. 微动目标雷达特征提取、成像与识别研究进展[J]. 雷达学报, 2018, 7 (5): 531- 547. |
ZHANG Q , HU J , LUO Y , et al. Research progresses in radar feature extraction, imaging, and recognition of target with micro-motions[J]. Journal of Radars, 2018, 7 (5): 531- 547. | |
13 | CHEN V C . The micro Doppler effect in radar[M]. Boston: Artech House, 2011. |
14 | 崔闪, 李胜, 闫华. 一种基于HRRP的三维散射中心提取方法[J]. 系统仿真学报, 2018, 30 (2): 443- 451. |
CUI S , LI S , YAN H . A method of 3D scattering center extraction based on multiple HRRP series[J]. Journal of System Simulation, 2018, 30 (2): 443- 451. | |
15 |
ANG H , HE S Y , ZHANG Y H , et al. A forward approach to establish parametric scattering center models for known complex radar targets applied to SAR ATR[J]. IEEE Trans.on Antennas and Propagation, 2014, 62 (12): 6192- 6205.
doi: 10.1109/TAP.2014.2360700 |
16 |
WANG S Y , JENG S K . A deterministic method for generating a scattering-center model to reconstruct the RCS pattern of complex radar targets[J]. IEEE Trans.on Electromagnetic Compatibility, 1997, 39 (4): 315- 323.
doi: 10.1109/15.649821 |
17 | 翟云. 基于目标表面等效电流的散射中心参数提取[D]. 北京:北京理工大学, 2019. |
ZHAI Y. Scattering center parameter extraction based on target surface equivalent current[D]. Beijing:Beijing Institute of Technology, 2019. | |
18 |
BHALLA R , LING H . Three-dimensional scattering center extraction using the shooting and bouncing ray technique[J]. IEEE Trans.on Antennas and Propagation, 1996, 44 (11): 1445- 1453.
doi: 10.1109/8.542068 |
19 | BHALLA R , MOORE J , HAO L . A global scattering center representation of complex targets using the shooting and bouncing ray technique[J]. IEEE Trans.on Antennas & Propagation, 1997, 45 (12): 1850- 1856. |
20 | ZHOU J X , SHI Z G , FU Q . Three-dimensional scattering center extraction based on wide aperture data at a single elevation[J]. IEEE Trans.on Geoscience and Remote Sensing, 2014, 53 (3): 1638- 1655. |
21 | CONG Y L , CHEN B , LIU H W , et al. Nonparametric Bayesian attributed scattering center extraction for synthetic aperture radar targets[J]. IEEE Trans.on Signal Process, 2016, 64 (180): 4723- 4736. |
22 |
ZHAO Y , BO J , ZHANG L , et al. 3D fully polarimetric attributed scattering center extraction based on sequential 2D SAR images[J]. IEEE Access, 2019, 7, 58570- 58583.
doi: 10.1109/ACCESS.2019.2914345 |
23 |
POTTER L C , CHIANG D M , CARRIERE R , et al. A GTD-based parametric model for radar scattering[J]. IEEE Trans.on Antennas and Propagation, 1995, 43 (10): 1058- 1067.
doi: 10.1109/8.467641 |
24 |
GERRY M J , POTTER L C , GUPTA I J , et al. A parametric model for synthetic aperture radar measurements[J]. IEEE Trans.on Antennas and Propagation, 1999, 47 (7): 1179- 1188.
doi: 10.1109/8.785750 |
25 | XIAO G L , GUO K L , WU B Y , et al. Accurate scattering centers modeling for complex conducting targets based on induced currents[J]. Science China (Information Sciences), 2021, 64 (2): 268- 270. |
26 | JESKE H E G. Atmospheric effects on radar target identification and imaging[D]. Amsterdam: Reidel, 1976. |
27 |
连科峰, 张红霞, 陈益邻. NURBS曲面RCS的物理光学法混合计算[J]. 电波科学学报, 2006, 21 (1): 135- 139.
doi: 10.3969/j.issn.1005-0388.2006.01.027 |
LIAN K F , ZHANG H X , CHEN Y L . Hybrid PO solution for RCS of NURBS surfaces[J]. Chinese Journal of Radio Science, 2006, 21 (1): 135- 139.
doi: 10.3969/j.issn.1005-0388.2006.01.027 |
|
28 |
VELAMPARAMBIL S , WENG C C . Analysis and perform ance of a distributed memory multilevel fast multipole algorithm[J]. IEEE Trans.on Antennas and Propagation, 2005, 53 (8): 2719- 2727.
doi: 10.1109/TAP.2005.851859 |
29 |
PAN X M , PI W C , YANG M L , et al. Solving problems with over one billion unknowns by the MLFMA[J]. IEEE Trans.on Antennas and Propagation, 2012, 60 (5): 2571- 2574.
doi: 10.1109/TAP.2012.2189746 |
30 |
GERRY M J , POTTER L C , GUPTA I J , et al. A parametric model for synthetic aperture radar measurements[J]. IEEE Trans.on Antennas and Propagation, 1999, 47 (7): 1179- 1188.
doi: 10.1109/8.785750 |
[1] | 胡毅立, 赵永波, 陈胜, 牛奔. 双插值拟合的共形电磁矢量传感器阵列解相干[J]. 系统工程与电子技术, 2022, 44(8): 2393-2402. |
[2] | 熊元燚, 谢文冲. 基于空时约束的自适应迭代单脉冲估计方法[J]. 系统工程与电子技术, 2022, 44(8): 2506-2514. |
[3] | 金艳, 赵大地, 姬红兵. 脉冲噪声下基于NAT函数的LFM信号参数估计[J]. 系统工程与电子技术, 2022, 44(3): 762-770. |
[4] | 杨宇超, 方明, 赵晨帆, 王玥琪, 方刚. 高速机动目标长时间相参积累和参数估计算法研究[J]. 系统工程与电子技术, 2022, 44(12): 3811-3820. |
[5] | 周毅恒, 杨军, 夏赛强, 吕明久. 闪烁现象下旋翼目标微动参数估计方法[J]. 系统工程与电子技术, 2022, 44(1): 54-63. |
[6] | 邢笑宇, 霍超颖, 殷红成, 王静. 基于光电融合的目标三维结构反演[J]. 系统工程与电子技术, 2021, 43(9): 2392-2399. |
[7] | 张天骐, 白杨柳, 胡延平, 张晓艳. 交替二进制偏移载波信号的多参数盲估计[J]. 系统工程与电子技术, 2021, 43(9): 2665-2672. |
[8] | 陆金文, 闫华, 张磊, 殷红成. 基于弹跳射线技术的三维GTD模型构建方法[J]. 系统工程与电子技术, 2021, 43(8): 2028-2036. |
[9] | 徐嘉华, 张小宽, 郑舒予, 宗彬锋, 张敬伟. 基于改进正交匹配追踪算法的属性散射中心提取[J]. 系统工程与电子技术, 2021, 43(8): 2076-2082. |
[10] | 周荣艳, 陈建峰, 李晓强, 谭伟杰. 基于目标高斯分布的定位系统节点最优部署方法[J]. 系统工程与电子技术, 2021, 43(7): 1791-1796. |
[11] | 王凌, 潘华, 赵维. 互耦效应下低复杂度的二维DOA估计算法[J]. 系统工程与电子技术, 2021, 43(7): 1819-1823. |
[12] | 王曼颖, 龚晓峰, 雒瑞森, 边彤, 王之远. 基于自适应形态学的跳频信号参数联合盲估计[J]. 系统工程与电子技术, 2021, 43(5): 1398-1405. |
[13] | 李槟槟, 陈辉, 刘维建, 张昭建, 周必雷. 低快拍下基于稀疏重构的大电磁矢量传感器阵列多维参数联合估计[J]. 系统工程与电子技术, 2021, 43(4): 868-874. |
[14] | 徐嘉华, 张小宽, 郑舒予, 宗彬锋, 郑书昌. 基于改进3D-ESPRIT算法的GTD模型参数估计与目标识别[J]. 系统工程与电子技术, 2021, 43(2): 336-342. |
[15] | 冯维婷, 梁青, 谷静. 基于FMCW雷达的旋转目标微动参数提取方法[J]. 系统工程与电子技术, 2021, 43(12): 3564-3570. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||