系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (5): 1757-1764.doi: 10.12305/j.issn.1001-506X.2022.05.39
• 可靠性 • 上一篇
杨占刚, 徐海义, 成博源, 石旭东*
收稿日期:
2021-07-20
出版日期:
2022-05-01
发布日期:
2022-05-16
通讯作者:
石旭东
作者简介:
杨占刚(1979—), 男, 副教授, 博士, 主要研究方向为飞机电源系统建模与健康管理|徐海义(1997—), 男, 硕士研究生, 主要研究方向为飞机电源系统故障建模与智能诊断|成博源(1998—), 男, 硕士研究生, 主要研究方向为飞机电源系统故障建模与健康管理|石旭东(1972—), 男, 教授, 博士, 主要研究方向为机载用电设备故障建模与智能诊断
基金资助:
Zhangang YANG, Haiyi XU, Boyuan CHENG, Xudong SHI*
Received:
2021-07-20
Online:
2022-05-01
Published:
2022-05-16
Contact:
Xudong SHI
摘要:
针对具有多并联支路绕组结构的航空发电机在偏心故障下的输出三相电压、电流故障特征差异小, 造成故障不易识别的问题, 提出一种基于烟花算法(fireworks algorithm, FWA)优化深度置信网络(deep belief network, DBN)的故障诊断方法。首先根据有限元法搭建航空发电机模型, 通过仿真获取不同静态、动态偏心故障输出数据; 然后运用FWA训练优化与极限学习机(extreme learning machine, ELM)相结合的DBN网络, 得到最佳DBN-ELM模型结构; 最后由ELM分类器进行故障诊断分类。诊断结果表明, 相较于传统的故障诊断方法, 应用所提方法进行航空发电机偏心故障诊断, 可以获得更高的准确率, 平均准确率达到99.203%。
中图分类号:
杨占刚, 徐海义, 成博源, 石旭东. 基于FWA-DBN的航空发电机偏心故障诊断[J]. 系统工程与电子技术, 2022, 44(5): 1757-1764.
Zhangang YANG, Haiyi XU, Boyuan CHENG, Xudong SHI. Aviation generator eccentricity fault diagnosis based on FWA-DBN[J]. Systems Engineering and Electronics, 2022, 44(5): 1757-1764.
表3
三相幅值对比"
故障类别 | UA/V | UB/V | UC/V | iA/A | iB/A | iC/A |
正常 | 330.881 | 330.032 | 330.692 | 120.320 | 120.012 | 120.252 |
ρS=0.25 | 330.784 | 330.070 | 330.577 | 120.285 | 120.025 | 120.210 |
ρS=0.50 | 331.445 | 330.845 | 331.108 | 120.525 | 120.307 | 120.403 |
ρS=0.75 | 332.356 | 331.784 | 332.467 | 120.857 | 120.649 | 120.897 |
ρD=0.25 | 330.708 | 329.918 | 330.124 | 120.257 | 119.970 | 120.045 |
ρD=0.50 | 333.391 | 333.164 | 333.442 | 121.233 | 121.151 | 121.252 |
ρD=0.75 | 332.364 | 331.583 | 331.621 | 120.860 | 120.576 | 120.589 |
1 |
BERSCH K , NUZZO S , CONNOR P H , et al. Thermal and electromagnetic stator vent design optimisation for synchronous generators[J]. IEEE Trans.on Energy Conversion, 2021, 36 (1): 207- 217.
doi: 10.1109/TEC.2020.3004393 |
2 | SADEGHI I, EHYA H, FAIZ J. Analytic method for eccentricity fault diagnosis in salient-pole synchronous generators[C]//Proc. of the International Conference on Optimization of Electrical and Electronic Equipment & Intermational Aegean Conference on Electrical Machines and Power Electronics, 2017: 261-267. |
3 |
BRUZZESE C , JOKSIMOVIC G . Harmonic signatures of static eccentricities in the stator voltages and in the rotor current of no-load salient-pole synchronous generators[J]. IEEE Trans.on Industrial Electronics, 2011, 58 (5): 1606- 1624.
doi: 10.1109/TIE.2010.2087296 |
4 | GALFARSORO U, MCCLOSKEY A, ZARATE S, et al. Influence of manufacturing tolerances and eccentricities on the unbal anced magnetic pull in permanent magnet synchronous motors[C]//Proc. of the International Conference on Electrical Machines, 2020: 1363-1369. |
5 |
EHYA H , NYSVEEN A , NILSSEN R , et al. Static and dynamic eccentricity fault diagnosis of large salient pole synchronous generators by means of external magnetic field[J]. IET Electric Power Applications, 2021, 15 (7): 890- 902.
doi: 10.1049/elp2.12068 |
6 |
ILAMPARITHI T C , NANDI S . Identification of spectral components in the line current of eccentric salient pole machines using a binomial series-based inverse air-gap function[J]. IET Electric Power Applications, 2013, 7 (4): 303- 312.
doi: 10.1049/iet-epa.2012.0192 |
7 |
LASJERDI H , NASIRI-GHEIDARI Z , TOOTOONCHIAN F . Static eccentricity fault diagnosis in wound-rotor resolvers[J]. IEEE Sensors Journal, 2021, 21 (2): 1424- 1432.
doi: 10.1109/JSEN.2020.3019260 |
8 | 任杰, 王秀和, 赵文良, 等. 永磁同步电机转子偏心空载气隙磁场解析计算[J]. 电机与控制学报, 2020, 24 (8): 26- 32. |
REN J , WANG X H , ZHAO W L , et al. Open circuit magnetic field prediction in permanent magnet synchronous machine with rotor eccentricity[J]. Electric Machines and Control, 2020, 24 (8): 26- 32. | |
9 | 崔洪玮. 偏心故障内置式永磁同步电机电磁场分析与诊断方法研究[D]. 哈尔滨工业大学, 2019. |
CUI H W. Research on electromagnetic field analysis and diagnosis method of the interior permanent magnet synchronous motor with eccentricity fault[D]. Harbin: Harbin Institute of Technology, 2019. | |
10 | 冯战, 王杰, 黄思思, 等. 基于WP-LSTM的偏心转子马达故障诊断方法[J]. 组合机床与自动化加工技术, 2020, (10): 98- 102, 105. |
FENG Z , WANG J , HUANG S S , et al. Fault diagnosis method for eccentric rotor motor based on WP-LSTM[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2020, (10): 98- 102, 105. | |
11 | 任强, 官晟, 王凤军, 等. 基于EEMD和PSO-SVM的电机气隙偏心故障诊断[J]. 组合机床与自动化加工技术, 2021, (2): 73- 76, 85. |
REN Q , GUAN S , WANG F J , et al. Motor air-gap eccentricity fault diagnosis based on EEMD and PSO-SVM[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2021, (2): 73- 76, 85. | |
12 | TAMILSELVAN P , WANG P . Failure diagnosis using deep belief learning based health state classification[J]. Reliability Engineering & System Safety, 2013, 115, 124- 135. |
13 | 李京峰, 陈云翔, 项华春, 等. 基于LSTM-DBN的航空发动机剩余寿命预测[J]. 系统工程与电子技术, 2020, 42 (7): 1637- 1644. |
LI J F , CHEN Y X , XIANG H C , et al. Remaining useful life prediction for aircraft engine based on LSTM-DBN[J]. Systems Engineering and Electronics, 2020, 42 (7): 1637- 1644. | |
14 | 马楠, 倪优扬, 葛红娟. 基于DBN的航空发电机故障诊断方法研究[J]. 航空计算技术, 2020, 50 (4): 71- 75. |
MA N , NI Y Y , GE H J . Research on fault diagnosis method of aviation generator based on DBN[J]. Aeronautical Computing Technique, 2020, 50 (4): 71- 75. | |
15 | 李俊卿, 陈雅婷, 李斯璇. 基于深度置信网络的同步发电机励磁绕组匝间短路故障预警[J]. 电力自动化设备, 2021, 41 (2): 153- 158. |
LI J Q , CHEN Y T , LI S X . Early warning of inter-turn short circuit fault in excitation windings of synchronous generator based on deep belief network[J]. Electric Power Automation Equipment, 2021, 41 (2): 153- 158. | |
16 | 崔江, 郭瑞东, 张卓然, 等. 基于改进DBN的发电机旋转整流器故障特征提取技术[J]. 中国电机工程学报, 2020, 40 (7): 2369- 2376, 2415. |
CUI J , GUO R D , ZHANG Z R , et al. Generator rotating rectifier fault feature extraction technique based on improved DBN[J]. Proceedings of the CSEE, 2020, 40 (7): 2369- 2376, 2415. | |
17 | 李益兵, 王磊, 江丽. 基于PSO改进深度置信网络的滚动轴承故障诊断[J]. 振动与冲击, 2020, 39 (5): 89- 96. |
LI Y B , WANG L , JIANG L . Rolling bearing fault diagnosis based on DBN algorithm improved with PSO[J]. Journal of Vibration and Shock, 2020, 39 (5): 89- 96. | |
18 | ZHAO H T , ZHANG C S , NING J X . A best firework updating information guided adaptive fireworks algorithm[J]. Neural Computing & Applications, 2019, 31 (1): 79- 99. |
19 |
CHEN Y G , LI L X , ZHAO X C , et al. Simplified hybrid fireworks algorithm[J]. Knowledge-Based Systems, 2019, 173, 128- 139.
doi: 10.1016/j.knosys.2019.02.029 |
20 |
WANG W D , LIU K J , YANG C , et al. Cyber physical energy optimization control design for PHEVs based on enhanced firework algorithm[J]. IEEE Trans.on Vehicular Technology, 2021, 70 (1): 282- 291.
doi: 10.1109/TVT.2020.3046520 |
21 | TOUFIGHIAN S, FAIZ J, ERFANI-NIK A. Static eccentricity fault detection in salient and non-salient synchronous generators using harmonic components[C]//Proc. of the 12th Power Electronics, Drive Systems, and Technologies Conference, 2021. |
22 | 李海平, 齐卓砾, 胡君朋. 基于FFT-DBN的行星齿轮箱齿面磨损故障智能判定方法研究[J]. 测控技术, 2020, 39 (12): 50- 54, 62. |
LI H P , QI Z L , HU J P . Intelligent judgment of tooth wear fault problems for planetary gearbox based on FFT-DBN[J]. Measurement & Control Technology, 2020, 39 (12): 50- 54, 62. | |
23 | DAI L, PAN P S. Research on intrusion detection based on improved DBN-ELM[C]//Proc. of the International Conference on Communications, Information System and Computer Engineering, 2019: 495-499. |
24 |
XIE Y C , ZOU J X , LI Z L , et al. A novel deep belief network and extreme learning machine based performance degradation prediction method for proton exchange membrane fuel cell[J]. IEEE Access, 2020, 8, 176661- 176675.
doi: 10.1109/ACCESS.2020.3026487 |
[1] | 谢家豪, 黄树彩, 韦道知, 张曌宇, 王文豪. 基于PEV准则的不确定混合多传感器联盟求解[J]. 系统工程与电子技术, 2022, 44(3): 819-826. |
[2] | 张捷, 杨丽花, 聂倩. 新型的基于堆栈式ELM的时变信道预测方法[J]. 系统工程与电子技术, 2022, 44(2): 662-667. |
[3] | 董庆, 李本威, 闫思齐, 钱仁军. 基于BSO-ELM的涡轴发动机加速过程性能参数预测[J]. 系统工程与电子技术, 2021, 43(8): 2181-2188. |
[4] | 史朝卫, 孟相如, 康巧燕, 苏玉泽. 基于混合流量预测的虚拟网络拓扑重构方法[J]. 系统工程与电子技术, 2021, 43(5): 1382-1388. |
[5] | 杨凌, 程丽, 韩琴, 赵傲男. 基于卡尔曼滤波的极限学习机在线盲均衡算法[J]. 系统工程与电子技术, 2021, 43(3): 623-630. |
[6] | 李京峰, 陈云翔, 项华春, 蔡忠义. 基于LSTM-DBN的航空发动机剩余寿命预测[J]. 系统工程与电子技术, 2020, 42(7): 1637-1644. |
[7] | 骆伟林, 金宏斌, 李浩, 周荣华. 基于混沌自适应烟花算法的雷达信号盲源分离[J]. 系统工程与电子技术, 2020, 42(11): 2497-2505. |
[8] | 田桂林, 刘昌云, 高嘉乐, 吴舒然. 基于烟花算法的多传感器优化模型部署#br#[J]. 系统工程与电子技术, 2019, 41(8): 1742-1748. |
[9] | 方浩, 李艾华, 潘玉龙, 王学进, 何川, 吴元江. 基于自学习框架的红外场景仿真效果评价[J]. 系统工程与电子技术, 2019, 41(2): 266-272. |
[10] | 时维国, 许超. 基于相空间重构与鲁棒极限学习机的时延预测[J]. 系统工程与电子技术, 2019, 41(2): 416-421. |
[11] | 余敏建, 游航航, 韩其松, 杨海燕, 高阳阳. 基于改进烟花算法的空战指挥引导对策生成[J]. 系统工程与电子技术, 2019, 41(12): 2780-2788. |
[12] | 徐西蒙, 杨任农, 符颖, 赵雨. 基于ELM_AdaBoost强预测器的空战目标威胁评估[J]. 系统工程与电子技术, 2018, 40(8): 1760-1768. |
[13] | 张东东, 孙锐, 高隽. 基于极限学习机和boosting多核学习的目标跟踪算法[J]. 系统工程与电子技术, 2017, 39(9): 2149-2156. |
[14] | 薛俊杰, 王瑛, 孟祥飞, 肖吉阳. 二进制反向学习烟花算法求解多维背包问题[J]. 系统工程与电子技术, 2017, 39(2): 451-458. |
[15] | 杜占龙, 李小民, 席雷平, 张金中, 刘新海. 多分类概率极限学习机及其在剩余使用寿命预测中的应用[J]. 系统工程与电子技术, 2015, 37(12): 2777-2784. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||