1 |
LEI Y G , LI N P , GUO L , et al. Machinery health prognostics: a systematic review from data acquisition to RUL prediction[J]. Mechanical Systems and Signal Processing, 2018, 104, 799- 834.
doi: 10.1016/j.ymssp.2017.11.016
|
2 |
ORDÓNEZ C , LASHERAS F S , ROCA-PARDINAS J , et al. A hybrid ARIMA-SVM model for the study of the remaining useful life of aircraft engines[J]. Journal of Computational and Applied Mathematics, 2019, 346, 184- 191.
doi: 10.1016/j.cam.2018.07.008
|
3 |
KUMAR A , CHINNAM R B , TSENG F . An HMM and polynomial regression based approach for remaining useful life and health state estimation of cutting tools[J]. Computers & Industrial Engineering, 2019, 128, 1008- 1014.
|
4 |
SON J B , ZHOU S Y , SANKAVARAM C , et al. Remaining useful life prediction based on noisy condition monitoring signals using constrained Kalman filter[J]. Reliability Engineering & System Safety, 2016, 152, 38- 50.
|
5 |
COSTA P R D O , AKCAY A , ZHANG Y , et al. Attention and long short-term memory network for remaining useful lifetime predictions of turbofan engine degradation[J]. International Journal of Prognostics and Health Management, 2019, 10 (4): 211477960.
|
6 |
ELLEFSEN A L , BJORLYKHAUG E , AESOY V , et al. Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture[J]. Reliability Engineering & System Safety, 2019, 183, 240- 251.
|
7 |
RABINER L R . A tutorial on hidden Markov models and selec-ted applications in speech recognition[J]. Proceedings of the IEEE, 1989, 77 (2): 257- 286.
doi: 10.1109/5.18626
|
8 |
张袁鹏, 郑岱堃, 李昕哲, 等. 基于隐马尔可夫模型的动态规划检测前跟踪算法[J]. 系统工程与电子技术, 2019, 41 (11): 2479- 2487.
|
|
ZHANG Y P , ZHENG D K , LI X Z , et al. Dynamic programming track-before-detect algorithm based on hidden Markov model[J]. Systems Engineering and Electronics, 2019, 41 (11): 2479- 2487.
|
9 |
JIANG J , CHEN R Y , CHEN M , et al. Dynamic fault prediction of power transformers based on hidden Markov model of dissolved gases analysis[J]. IEEE Trans.on Power Deliver, 2019, 34 (4): 1393- 1400.
doi: 10.1109/TPWRD.2019.2900543
|
10 |
ZHU J L , GE Z Q , SONG Z H . HMM-driven robust probabilistic principal component analyzer for dynamic process fault classification[J]. IEEE Trans.on Industrial Electronics, 2015, 62 (6): 3814- 3821.
|
11 |
YIAKOPOULOS C , GRYLLIAS K , CHIOUA M , et al. An on-line SAX and HMM-based anomaly detection and visualization tool for early disturbance discovery in a dynamic industrial process[J]. Journal of Process Control, 2016, 44, 134- 159.
doi: 10.1016/j.jprocont.2016.05.007
|
12 |
GALAGEDARAGE D M , KHAN F . Process fault prognosis using hidden Markov model-Bayesian networks hybrid model[J]. Industrial & Engineering Chemistry Research, 2019, 58 (27): 12041- 12053.
|
13 |
WANG F , TAN S , YANG Y W , et al. Hidden Markov model-based fault detection approach for a multimode process[J]. Industrial & Engineering Chemistry Research, 2016, 55 (16): 4613- 4621.
|
14 |
DU Y , WU T H , MAKIS V . Parameter estimation and remaining useful life prediction of lubricating oil with HMM[J]. Wear, 2017, 376, 1227- 1233.
|
15 |
SOUALHI A , CLERC G , RAZIK H , et al. Hidden Markov models for the prediction of impending faults[J]. IEEE Trans.on Industrial Electronics, 2016, 63 (5): 3271- 3281.
doi: 10.1109/TIE.2016.2535111
|
16 |
LE T T , CHATELAIN F , BÉRENGUER C . Multi-branch hidden Markov models for remaining useful life estimation of systems under multiple deterioration modes[J]. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2016, 230 (5): 473- 484.
doi: 10.1177/1748006X15624584
|
17 |
RAMASSO E , ROMBAUT M , ZERHOUNI N . Joint prediction of continuous and discrete states in time-series based on belief functions[J]. IEEE Ttrans.on Cybernetics, 2012, 43 (1): 37- 50.
|
18 |
周俊. 数据驱动的航空发动机剩余使用寿命预测方法研究[D]. 南京: 南京航空航天大学, 2017.
|
|
ZHOU J. Research on data driven residual service life prediction method of aero-engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017.
|
19 |
AN S J , LIU W Q , VENKATESH S . Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression[J]. Pattern Recognition, 2007, 40 (8): 2154- 2162.
doi: 10.1016/j.patcog.2006.12.015
|
20 |
SMOLA A J , SCHÖLKOPF B . A tutorial on support vector regression[J]. Statistics and computing, 2004, 14 (3): 199- 222.
doi: 10.1023/B:STCO.0000035301.49549.88
|
21 |
周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
|
|
ZHOU Z H . Machine learning[M]. Beijing: Tsinghua University Press, 2016.
|
22 |
李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012.
|
|
LI H . Statistical learning method[M]. Beijing: Tsinghua University Press, 2012.
|
23 |
CAMCI F , CHINNAM R B . Health-state estimation and prognostics in machining processes[J]. IEEE Trans.on Automation Science and Engineering, 2010, 7 (3): 581- 597.
doi: 10.1109/TASE.2009.2038170
|
24 |
SAXENA A, GOEBEL K, SIMON D, et al. Damage propagation modeling for aircraft engine run-to-failure simulation[C]//Proc. of the IEEE International Conference on Prognostics and Health Management, 2008.
|
25 |
WANG T Y, YU J B, SIEGEL D, et al. A similarity-based prognostics approach for remaining useful life estimation of engineered systems[C]//Proc. of the IEEE International Conference on Prognostics and Health Management, 2008.
|
26 |
MALHOTRA P, TV V, RAMAKRISHNAN A, et al. Multi-sensor prognostics using an unsupervised health index based on LSTM encoder-decoder[EB/OL]. [2021-02-01]. https://arxiv.org/abs/1608.06154v1.
|
27 |
WEAKLIEM D L . A critique of the Bayesian information criterion for model selection[J]. Sociological Methods & Research, 1999, 27 (3): 359- 397.
|
28 |
梁泽明, 姜洪权, 周秉直, 等. 多参数相似性信息融合的剩余寿命预测[J]. 计算机集成制造系统, 2018, 24 (4): 5- 11.
|
|
LIANG Z M , JIANG H Q , ZHOU B Z , et al. Multi-variable similarity-based information fusion method for remaining useful life prediction[J]. Computer Integrated Manufacturing Systems, 2018, 24 (4): 5- 11.
|
29 |
BABU G S, ZHAO P, LI X. Deep convolutional neural network based regression approach for estimation of remaining useful life[C]//Proc. of the International Conference on Database Systems for Advanced Applications, 2016: 214-228.
|
30 |
彭开香, 皮彦婷, 焦瑞华, 等. 航空发动机的健康指标构建与剩余寿命预测[J]. 控制理论与应用, 2020, 37 (4): 713- 720.
|
|
PENG K X , PI Y T , JIAO R H , et al. Health indicator construction and remaining useful life prediction for aircraft engine[J]. Control Theory & Applications, 2020, 37 (4): 713- 720.
|