系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (5): 1738-1746.doi: 10.12305/j.issn.1001-506X.2022.05.37
刘鸿彬1, 赵骞2, 贾祥1,*, 郭波1
收稿日期:
2021-04-08
出版日期:
2022-05-01
发布日期:
2022-05-16
通讯作者:
贾祥
作者简介:
刘鸿彬(1998—), 男, 硕士研究生, 主要研究方向为装备综合保障|赵骞(1994—), 男, 助教, 硕士, 主要研究方向为系统可靠性分析、装备试验鉴定|贾祥(1992—), 男, 副教授, 博士, 主要研究方向为系统可靠性分析|郭波(1962—), 男, 教授, 博士研究生导师, 博士, 主要研究方向为可靠性、项目管理
基金资助:
Hongbin LIU1, Qian ZHAO2, Xiang JIA1,*, Bo GUO1
Received:
2021-04-08
Online:
2022-05-01
Published:
2022-05-16
Contact:
Xiang JIA
摘要:
剩余寿命预测在可靠性工程中十分重要。而r/n(G)表决系统由于结构复杂, 对于其剩余寿命研究相对较少。本文假定部件寿命服从指数-威布尔分布, 在部件失效信息已知的情况下, 推导得到了表决系统剩余寿命期望的解析式, 也分别给出了失效信息未知和部件寿命服从威布尔分布这两种特殊情况下的解析式。仿真实验证明了所提方法的准确性和有效性, 也表明忽略部件失效信息对系统的剩余寿命进行预测, 所得结果偏差很大。
中图分类号:
刘鸿彬, 赵骞, 贾祥, 郭波. 失效信息已知时r/n(G)表决系统的剩余寿命预测[J]. 系统工程与电子技术, 2022, 44(5): 1738-1746.
Hongbin LIU, Qian ZHAO, Xiang JIA, Bo GUO. Residual life prediction of r-out-of-n: G systems with known failure information[J]. Systems Engineering and Electronics, 2022, 44(5): 1738-1746.
表1
剩余寿命点估计数值计算和仿真方法对比"
表决系统 | 工作时间τ | 数值计算 | 仿真结果 | 误差率 |
无失效信息3/4(G) (α=2, β=3.4 η=50) | τ1=25 | 24.532 5 | 24.849 0 | 0.012 9 |
τ2=30 | 19.608 0 | 19.512 5 | 0.004 9 | |
τ3=35 | 14.947 3 | 15.286 4 | 0.022 7 | |
τ4=40 | 10.911 2 | 10.932 6 | 0.002 0 | |
失效1个部件的3/4(G) (α=2, β=3.4, η=50) | τ1=25 | 18.483 9 | 18.766 1 | 0.015 3 |
τ2=30 | 14.360 8 | 14.588 0 | 0.015 8 | |
τ3=35 | 10.921 0 | 11.019 3 | 0.009 0 | |
τ4=40 | 8.232 8 | 8.294 8 | 0.007 5 | |
无失效信息3/5(G) (α=3.5, β=1.8, η=150) | τ1=80 | 124.495 4 | 124.506 9 | 0.000 1 |
τ2=85 | 119.497 9 | 119.815 4 | 0.002 7 | |
τ3=90 | 114.503 5 | 114.211 4 | 0.002 6 | |
τ4=95 | 109.515 1 | 110.073 0 | 0.005 1 | |
失效2个部件的3/5(G) (α=3.5, β=1.8, η=150) | τ1=80 | 76.006 7 | 76.498 8 | 0.006 5 |
τ2=85 | 71.940 5 | 71.565 5 | 0.005 2 | |
τ3=90 | 68.056 5 | 67.373 7 | 0.010 1 | |
τ4=95 | 64.363 7 | 64.986 8 | 0.009 7 |
表2
剩余寿命区间估计数值计算和仿真方法对比"
表决系统 | 工作时间τ | 80%置信区间数值计算 | 80%置信区间仿真结果 |
无失效信息3/4(G) (α=2, β=3.4, η=50) | τ1=25 | [15.161 9, 33.840 2] | [15.080 5, 33.668 0] |
τ2=30 | [10.292 8, 28.855 1] | [10.246 5, 29.369 2] | |
τ3=35 | [5.992 9, 23.937 2] | [6.044 6, 23.743 7] | |
τ4=40 | [3.041 8, 19.249 7] | [3.049 2, 19.405 4] | |
失效1个部件的3/4(G) (α=2, β=3.4, η=50) | τ1=25 | [7.474 5, 29.332 7] | [7.605 8, 29.408 8] |
τ2=30 | [4.389 2, 24.590 3] | [4.096 4, 24.1438] | |
τ3=35 | [2.512 4, 20.168 3] | [2.253 0, 20.259 6] | |
τ4=40 | [1.496 1, 16.243 7] | [1.598 3, 16.536 4] | |
无失效信息3/5(G) (α=3.5, β=1.8, η=150) | τ1=80 | [78.934 5, 172.565 5] | [78.992 1, 169.881 4] |
τ2=85 | [73.937 2, 167.566 7] | [71.101 5, 169.722 6] | |
τ3=90 | [68.944 5, 162.567 9] | [66.894 4, 162.867 8] | |
τ4=95 | [63.962 6, 157.570 6] | [63.667 7, 156.289 6] | |
失效2个部件的3/5(G) (α=3.5, β=1.8, η=150) | τ1=80 | [25.650 8, 129.608 9] | [27.537 8, 126.931 8] |
τ2=85 | [22.563 9, 124.948 9] | [22.984 2, 127.434 6] | |
τ3=90 | [19.823 5, 120.375 8] | [19.915 7, 118.450 3 | |
τ4=95 | [17.421 7, 115.901 9] | [15.599 4, 116.775 8] |
表3
50台设备的失效时间"
设备 | 失效时间 | 设备 | 失效时间 | 设备 | 失效时间 | 设备 | 失效时间 | 设备 | 失效时间 | ||||
1 | 0.1 | 11 | 7 | 21 | 36 | 31 | 67 | 41 | 84 | ||||
2 | 0.2 | 12 | 11 | 22 | 40 | 32 | 67 | 42 | 84 | ||||
3 | 1 | 13 | 12 | 23 | 45 | 33 | 67 | 43 | 84 | ||||
4 | 1 | 14 | 18 | 24 | 46 | 34 | 67 | 44 | 85 | ||||
5 | 1 | 15 | 18 | 25 | 47 | 35 | 72 | 45 | 85 | ||||
6 | 1 | 16 | 18 | 26 | 50 | 36 | 75 | 46 | 85 | ||||
7 | 1 | 17 | 18 | 27 | 55 | 37 | 79 | 47 | 85 | ||||
8 | 2 | 18 | 18 | 28 | 60 | 38 | 82 | 48 | 85 | ||||
9 | 3 | 19 | 21 | 29 | 63 | 39 | 82 | 49 | 86 | ||||
10 | 6 | 20 | 32 | 30 | 63 | 40 | 83 | 50 | 86 |
1 | 蒋平, 邢云燕, 程文科, 等. 可靠性工程[M]. 北京: 国防工业出版社, 2015. |
JIANG P , XING Y Y , CHENG W K , et al. An introduction to reliability engineering[M]. Beijing: National Defense Industry Press, 2015. | |
2 |
NAVARRO J , ERYILMAZ S . Mean residual lifetimes of consecutive k-out-of-n systems[J]. Journal of Applied Probability, 2007, 44 (1): 82- 98.
doi: 10.1239/jap/1175267165 |
3 | 赵骞. 基于贝叶斯理论的卫星平台剩余寿命预测方法研究[D]. 长沙: 国防科技大学, 2019. |
ZHAO Q. Research on residual life prediction of satellite platform based on Bayesian theory[D]. Changsha: National University of Defense Technology, 2019. | |
4 |
郑骏. 串联、并联、k/n(G)系统的Bayes可靠性分析[J]. 系统工程与电子技术, 1996, 18 (6): 74- 80.
doi: 10.3321/j.issn:1001-506X.1996.06.015 |
ZHENG J . Bayesian reliability analysis of series, parallel, k/n(G) system[J]. Systems Engineering and Electronics, 1996, 18 (6): 74- 80.
doi: 10.3321/j.issn:1001-506X.1996.06.015 |
|
5 |
ERYILMAZ S . On the mean residual life of a k-out-of-n: G system with a single cold standby component[J]. European Journal of Operational Research, 2012, 222 (2): 273- 277.
doi: 10.1016/j.ejor.2012.05.012 |
6 |
程畅, 李兴东. 关于k/n(F)系统寿命及其剩余寿命和休止时间的随机比较[J]. 兰州工业学院学报, 2016, 23 (5): 70- 73.
doi: 10.3969/j.issn.1009-2269.2016.05.018 |
CHENG C , LI X D . The comparison of stochastic in k/n(F) systems' lifetimes and its residual lifetimes, inactivity times[J]. Journal of Lanzhou Institute of Technology, 2016, 23 (5): 70- 73.
doi: 10.3969/j.issn.1009-2269.2016.05.018 |
|
7 |
ASADI M , BAYRAMOGLU I . The mean residual life function of a k-out-of-n structure at the level[J]. IEEE Trans.on Reliability, 2006, 55 (2): 314- 318.
doi: 10.1109/TR.2006.874934 |
8 |
RAQAB M Z , RYCHLIK T . Bounds for the mean residual life function of a k-out-of-n systems[J]. Metrika, 2011, 74, 361- 380.
doi: 10.1007/s00184-010-0307-7 |
9 | MOHAMMAD Z R . Evaluations of the mean residual lifetime of an m-out-of-n systems[J]. Statistics and Probability Letters, 2010, 80 (5/6): 333- 342. |
10 |
SARHAN A M , ABOUAMMOH A M . Reliability of k-out-of-n nonrepairable systems with nonindependent components subjected to common shocks[J]. Microelectronics Reliability, 2001, 41 (4): 617- 621.
doi: 10.1016/S0026-2714(00)00254-7 |
11 | LI X H , CHEN J . Aging properties of the residual life length of k-out-of-n systems with independent but non-identical components[J]. Applied Stochastic Models in Business & Industry, 2004, 20 (2): 143- 153. |
12 |
MUDHOLKAR G S , SRIVASTASVA D K , FREIMER M M . The exponentiated Weibull family: a reanalysis of the bus-motor-failure data[J]. Technometrics, 1995, 37, 436- 445.
doi: 10.1080/00401706.1995.10484376 |
13 |
MUDHOLKAR G S , SRIVASTASVA D K . The exponentiated Weibull family for analyzing bathtub failure-rate data[J]. IEEE Trans.on Reliability, 1993, 42 (2): 299- 302.
doi: 10.1109/24.229504 |
14 |
MUDHOLKAR G S , HUSTON A D . The exponentiated Weibull family: some properties and a flood data application[J]. Communications in Statistics-Theory and Methods, 1996, 25, 3059- 3083.
doi: 10.1080/03610929608831886 |
15 |
GUPTA R D , KUNDU D . Generalized exponential distributions[J]. Australian and New Zealand Journal of Statistics, 1999, 41 (2): 173- 188.
doi: 10.1111/1467-842X.00072 |
16 |
GUPTA R D , KUNDU D . Exponentiated exponential family: an alternative to gamma and Weibull distributions[J]. Biometrical Journal, 2001, 43, 117- 130.
doi: 10.1002/1521-4036(200102)43:1<117::AID-BIMJ117>3.0.CO;2-R |
17 |
NADARAJAH S , GUPTA A K . On the moments of the exponentiated Weibull distribution[J]. Communications in Statistics-Theory and Methods, 2005, 34, 253- 256.
doi: 10.1081/STA-200047460 |
18 |
NASSAR M M , EISSA F H . On the exponentiated Weibull distribution[J]. Communications in Statistic-Theory and Methods, 2003, 32, 1317- 1336.
doi: 10.1081/STA-120021561 |
19 | 肖明圆. 指数威布尔分布的统计分析[D]. 上海: 华东师范大学, 2011. |
XIAO M Y. Statistical analysis of exponentiated Weibull distribution[D]. Shanghai: East China Normal University, 2011. | |
20 | CHENG C H . The approximation of the exponential Weibull renewal function[J]. Chinese Quarterly Journal of Mathematics, 2018, 33 (4): 341- 357. |
21 | 张姝. 基于指数威布尔分布的组合统计模型[D]. 辽宁: 辽宁师范大学, 2018. |
ZHANG S. The composite models based on the exponentiated Weibull distribution[D]. Liaoning: Liaoning Normal University, 2018. | |
22 | 位林营, 胡海涛, 吴微露, 等. 基于指数威布尔分布的复杂电子系统使用可靠度建模[J]. 探测与控制学报, 2019, 41 (2): 115- 119. |
WEI L Y , HU H T , WU W L , et al. Operational reliability modeling of complex electronic systems on exponential Weibull distribution[J]. Journal of Detection & Control, 2019, 41 (2): 115- 119. | |
23 | PAL M , ALI M M , WOO J . Exponentiated Weibull distribution[J]. Statistica, 2006, 66 (2): 136- 148. |
24 | KABOM K , AROURY V M . On exponential-Weibull distribution useful in reliability and survival analysis[J]. Reliability: Theory & Applications, 2020, 15 (1): 20- 32. |
25 |
KHAN R U , KULSHRESTHA A , KHAN M A . Relations for moments of kth record values from exponential-Weibull lifetime distribution and a characterization[J]. Journal of the Egyptian Mathematical Society, 2015, 23 (3): 558- 562.
doi: 10.1016/j.joems.2014.11.003 |
26 | SHAKHATREH M K , LEMONTE A J , CORDEIRO G M . On the generalized extended exponential-Weibull distribution: properties and different methods of estimation[J]. International Journal of Computer Mathematics, 2019, 97 (5): 1029- 1057. |
27 | DIKKO H G , FAISAL A M . A new generalized exponential Weibull distribution: its properties and application[J]. Bayero Journal of Pure & Applied Sciences, 2017, 10 (2): 29- 37. |
28 | 赵骞, 贾祥, 程志君, 等. 部件寿命服从威布尔分布时典型系统的寿命与剩余寿命估计[J]. 系统工程与电子技术, 2019, 41 (7): 1665- 1671. |
ZHAO Q , JIA X , CHENG Z J , et al. Estimation of lifetime and residual life of typical system with Weibull distributed components[J]. Systems Engineering and Electronics, 2019, 41 (7): 1665- 1671. | |
29 |
ZHAO Q , JIA X , GUO B . Parameter estimation for the two-parameter exponentiated Weibull distribution based on multiply type-I censored data[J]. IEEE Access, 2019, 7, 45485- 45493.
doi: 10.1109/ACCESS.2019.2909088 |
30 |
刘强, 黄秀平, 周经纶, 等. 基于失效物理的动量轮贝叶斯可靠性评估[J]. 航空学报, 2009, 30 (8): 1392- 1397.
doi: 10.3321/j.issn:1000-6893.2009.08.006 |
LIU Q , HUANG X P , ZHOU J L , et al. Failure-physics-analy-sis-based method of Bayesian reliability estimations for mo-mentum wheel[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30 (8): 1392- 1397.
doi: 10.3321/j.issn:1000-6893.2009.08.006 |
[1] | 孙世岩, 张钢, 梁伟阁, 佘博, 田福庆. 基于时间序列数据扩增和BLSTM的滚动轴承剩余寿命预测方法[J]. 系统工程与电子技术, 2022, 44(3): 1060-1068. |
[2] | 陈云翔, 饶益, 蔡忠义, 王泽洲. 基于改进相似性的装备部件剩余寿命预测及经济性储备策略[J]. 系统工程与电子技术, 2021, 43(9): 2688-2696. |
[3] | 王泽洲, 陈云翔, 蔡忠义, 项华春, 王莉莉. 基于比例关系加速退化建模的设备剩余寿命在线预测[J]. 系统工程与电子技术, 2021, 43(2): 584-592. |
[4] | 蔡忠义, 王泽洲, 陈云翔, 项华春, 王莉莉. 基于比例加速退化建模的单台机载设备剩余寿命自适应预测[J]. 系统工程与电子技术, 2021, 43(11): 3405-3412. |
[5] | 李京峰, 陈云翔, 项华春, 蔡忠义. 基于LSTM-DBN的航空发动机剩余寿命预测[J]. 系统工程与电子技术, 2020, 42(7): 1637-1644. |
[6] | 蔡忠义, 王泽洲, 张晓丰, 李岩. 隐含非线性退化设备的剩余寿命在线预测方法[J]. 系统工程与电子技术, 2020, 42(6): 1410-1416. |
[7] | 杨志远, 赵建民, 李俐莹, 程中华, 郭驰名. 二元相关退化系统可靠性分析及剩余寿命预测[J]. 系统工程与电子技术, 2020, 42(11): 2661-2668. |
[8] | 蔡忠义, 陈云翔, 郭建胜, 王泽洲, 邓林. 考虑测量误差和随机效应的设备剩余寿命预测#br#[J]. 系统工程与电子技术, 2019, 41(7): 1658-1664. |
[9] | 赵骞, 贾祥, 程志君, 郭波. 部件寿命服从威布尔分布时典型系统的寿命与剩余寿命估计[J]. 系统工程与电子技术, 2019, 41(7): 1665-1671. |
[10] | 王泽洲, 陈云翔, 蔡忠义, 项华春, 罗承昆. 考虑随机失效阈值的设备剩余寿命在线预测[J]. 系统工程与电子技术, 2019, 41(5): 1162-1168. |
[11] | 黄亮, 刘君强, 贡英杰. 基于一致性检验的航空发动机剩余寿命预测[J]. 系统工程与电子技术, 2018, 40(12): 2736-2742. |
[12] | 蔡忠义, 郭建胜, 陈云翔, 董骁雄, 项华春. 基于步进加速退化建模的剩余寿命在线预测[J]. 系统工程与电子技术, 2018, 40(11): 2605-. |
[13] | 葛承垄, 朱元昌, 邸彦强, 胡志伟. 装备平行仿真技术的基础理论问题[J]. 系统工程与电子技术, 2017, 39(5): 1169-1177. |
[14] | 黄秀平, 汤衍真, 孙权, 周经伦. 突发和退化竞争失效产品的老练时间优化[J]. Journal of Systems Engineering and Electronics, 2013, 35(8): 1803-1808. |
[15] | 彭宝华,周经伦,孙权,冯静, 金光. 基于退化与寿命数据融合的产品剩余寿命预测[J]. Journal of Systems Engineering and Electronics, 2011, 33(5): 1073-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||