1 |
CHENG N , LYU F , CHEN J Y , et al. Big data driven vehicular networks[J]. IEEE Network, 2018, 32 (6): 160- 167.
doi: 10.1109/MNET.2018.1700460
|
2 |
LU N , CHENG N , ZHANG N , et al. Connected vehicles: solutions and challenges[J]. IEEE Internet of Things Journal, 2014, 1 (4): 289- 299.
doi: 10.1109/JIOT.2014.2327587
|
3 |
AL-SULTAN S , AL-DOORI M M , AL-BAYATTI A H , et al. A comprehensive survey on vehicular Ad Hoc network[J]. Journal of Network and Computer Applications, 2014, 37, 380- 392.
doi: 10.1016/j.jnca.2013.02.036
|
4 |
MASEGOSA R M , GOZALVEZ J . LTE-V for sidelink 5G V2X vehicular communications: a new 5G technology for short-range vehicle-to-everything communications[J]. IEEE Vehicular Technology Magazine, 2017, 12 (4): 30- 39.
doi: 10.1109/MVT.2017.2752798
|
5 |
3GPP. Study on scenarios and requirements for next generation access technologies, technical specification group radio access network, (Release 14), TR 38.913[R]. Technical Spectfication Group Rodio Access Network, 2016.
|
6 |
LIANG L , YE H , LI G Y . Spectrum sharing in vehicular networks based on multi-agent reinforcement learning[J]. IEEE Journal on Selected Areas in Communications, 2019, 37 (10): 2282- 2292.
doi: 10.1109/JSAC.2019.2933962
|
7 |
LIU J J , SHI Y P , FADLULLAH Z M , et al. Space-air-ground integrated network: a survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20 (4): 2714- 2741.
|
8 |
ZHANG N , ZHANG S , YANG P , et al. Software defined space-air-ground integrated vehicular networks, challenges and solutions[J]. IEEE Communications Magazine, 2017, 55 (7): 101- 109.
doi: 10.1109/MCOM.2017.1601156
|
9 |
EL HELOU M , IBRAHIM M , LAHOU S , et al. A network-assisted approach for RAT selection in heterogeneous cellular networks[J]. IEEE Journal on Selected Areas in Communications, 2015, 33 (6): 1055- 1067.
doi: 10.1109/JSAC.2015.2416987
|
10 |
XIE J L , GAO W J , LI C R . Heterogeneous network selection optimization algorithm based on a Markov decision model[J]. China Communications, 2020, 17 (2): 40- 53.
doi: 10.23919/JCC.2020.02.004
|
11 |
CHENG N , QUAN W , SHI W S , et al. A comprehensive simu-lation platform for space-air-ground integrated network[J]. IEEE Wireless Communications, 2020, 27 (1): 178- 185.
doi: 10.1109/MWC.001.1900072
|
12 |
KATO N , FADLULLAH Z M , TANG F X , et al. Optimizing space-air-ground integrated networks by artificial intelligence[J]. IEEE Wireless Communications, 2019, 26 (4): 140- 147.
doi: 10.1109/MWC.2018.1800365
|
13 |
WU H Q , CHEN J Y , ZHOU C H , et al. Resource management in space-air-ground integrated vehicular networks: SDN control and AI algorithm design[J]. IEEE Wireless Communications, 2020, 27 (6): 52- 60.
doi: 10.1109/MWC.001.2000130
|
14 |
ZHOU S , WANG G C , ZHANG S , et al. Bidirectional mission offloading for agile space-air-ground integrated networks[J]. IEEE Wireless Communications, 2019, 26 (2): 38- 45.
doi: 10.1109/MWC.2019.1800290
|
15 |
ALBUQUERQUE M, AYYAGARI A, DORSETT M A, et al. Global information grid (GIG) edge network interface architecture[C]//Proc. of the IEEE Military Comunications Confer-ence, 2007: 4455139.
|
16 |
HAMDI M , BOUDRIGA N , OBAIDAT M S . Bandwidth-effective design of a satellite-based hybrid wireless sensor network for mobile target detection and tracking[J]. IEEE Systems, 2008, 2 (1): 74- 82.
doi: 10.1109/JSYST.2007.916049
|
17 |
BLUMENTHAL S H. Medium earth orbit Ka band satellite communications system[C]//Proc. of the IEEE Military Comunications Conference, 2013: 273-277.
|
18 |
XIE J , XIAO S , LIAN Y G , et al. A throughput-aware joint vehicle route and access network selection approach based on SMDP[J]. China Communications, 2020, 17 (5): 243- 265.
doi: 10.23919/JCC.2020.05.019
|
19 |
GAO Z B , WEN B , HUANG L F , et al. Q-learning-based power control for LTE enterprise femtocell networks[J]. IEEE Systems Journal, 2017, 11 (4): 2699- 2707.
|
20 |
GOYAL R K, KAUSHAL S. Network selection using AHP for fast moving vehicles in heterogeneous networks[M]//CHAKI R, CORTESI A, SAEEDK, et al, ed. Advances in Intelligent Systems and Computing. New Delhi: Springer, 2015, 395: 235-243.
|
21 |
JIANG D D , HUO L W , LV Z H , et al. A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking[J]. IEEE Trans.on Intelligent Transportation Systems, 2018, 19 (10): 3305- 3319.
doi: 10.1109/TITS.2017.2778939
|
22 |
TANG T, WU W L, DENG Y N, et al. Access network selection algorithm in heterogeneous multi-cognitive wireless networks coexistence nvironment[C]//Proc. of the International Conference on Logistics Engineering, Management and Computer Science, 2015: 1266-1271.
|
23 |
OSBORNE M J . An introduction to game theory[M]. Oxford: Oxford University Press, 2004.
|
24 |
YE Y Y . The simplex and policy-iteration methods are strongly polynomial for the Markov decision problem with a fixed discount rate[J]. Mathematics of Operations Research, 2011, 36 (4): 593- 603.
doi: 10.1287/moor.1110.0516
|
25 |
DHIA I B, BOUHTOU M, EN-NAJJARY T, et al. Dynamic access point selection and resource allocation in multi-technology wireless network[C]//Proc. of the IEEE Wireless Communications and Networking Conferenc, 2019: 8885438.
|
26 |
DI B Y , ZHANG H L , SONG L Y , et al. Ultra-dense LEO: integrating terrestrial-satellite networks into 5G and beyond for data offloading[J]. IEEE Trans.on Wireless Communications, 2019, 18 (1): 47- 62.
doi: 10.1109/TWC.2018.2875980
|
27 |
ZHANG Z J , ZHANG W Y , TSENG F H , et al. Satellite mobile edge computing: improving QoS of high-speed satellite-terrestrial networks using edge computing techniques[J]. IEEE Network, 2019, 33 (1): 70- 76.
doi: 10.1109/MNET.2018.1800172
|
28 |
ABDERRAHIM W , AMIN O , ALOUINI M , et al. Latency-aware offloading in integrated satellite terrestrial networks[J]. IEEE Open Journal of the Communications Society, 2020, 1 (1): 490- 500.
|
29 |
SHAHID S M , SEYOUM Y T , WON S H , et al. Load balanc-ing for 5G integrated satellite-terrestrial networks[J]. IEEE Access, 2020, 8, 132144- 132156.
doi: 10.1109/ACCESS.2020.3010059
|
30 |
SHWETHA A, SANKAR P. Queue management scheme to control congestion in a vehicular based sensor network[C]//Proc. of the 2nd International Conference on Inventive Systems and Control, 2018: 917-921.
|