1 |
JACOB M, PRIEBE S, KURNER T, et al. An overview of ongoing activities in the field of channel modeling, spectrum allocation and standardization for mm-wave and THz indoor communications[C]//Proc. of the IEEE Globecom Workshops, 2009.
|
2 |
BOULOGEORGOS A A, ALEXIOU A. Performance evaluation of the initial access procedure in wireless THz systems[C]//Proc. of the 16th International Symposium on Wireless Communication Systems, 2019: 422-426.
|
3 |
RAPPAPORT T S . Wireless communications and applications above 100 GHz: opportunities and challenges for 6G and beyond[J]. IEEE Access, 2019, 78729- 78757.
|
4 |
YU X. Direct terahertz communications with wireless and fiber links[C]//Proc. of the 44th International Conference on Infrared, Millimeter, and Terahertz Waves, 2019.
|
5 |
HARA J F , EKIN S , CHOI W , et al. A perspective on terahertz next-generation wireless communications[J]. Technologies, 2019, 7 (2): 43- 46.
doi: 10.3390/technologies7020043
|
6 |
SCHNEIDER T . Ultrahigh-Bitrate wireless data communications via THz-links; possibilities and challenges[J]. Journal of Infrared Millimeter & Terahertz Waves, 2014, 36 (2): 159- 179.
|
7 |
JAMIL I, SINDIAN S, KHALIL A, et al. A new distributed decision making scheme for the IEEE 802.15.3 parent/child mode[C]//Proc. of the 3rd International Conference on Communications and Information Technology, 2013: 256-261.
|
8 |
SINDIAN S, SAMHAT A E, KHALIL A, et al. Dynamic superframe size-based admission control in parent/child HR WPANs[C]//Proc. of the 3rd International Conference on Communications and Information Technology, 2013: 314-319.
|
9 |
XIE S , LI H R , LI L X , et al. Survey of terahertz communication technology[J]. Journal on Communications, 2020, 41 (5): 168- 186.
|
10 |
HAN C , TONG W Q , YAO X W . MA-ADM: a memory-assisted angular-division-multiplexing MAC protocol in Terahertz communication networks[J]. Nano Communication Networks, 2017, 13, 51- 59.
doi: 10.1016/j.nancom.2017.08.001
|
11 |
SARA C A , KUNAL S , MARCELLO C , et al. Beyond 5G: THz-based medium access protocol for mobile heterogeneous networks[J]. IEEE Communications Magazine, 2018, 56 (6): 110- 115.
doi: 10.1109/MCOM.2018.1700924
|
12 |
CHEN Z , MA X Y , ZHANG B , et al. A survey on terahertz communications[J]. China Comm-unications, 2019, 16 (2): 1- 35.
|
13 |
赵越, 苏宏, 刘尚麟. 基于父/子微微网的接入控制策略及性能分析[J]. 通信技术, 2014, 47 (12): 1400- 1404.
doi: 10.3969/j.issn.1002-0802.2014.12.011
|
|
ZHAO Y , SU H , LIU S L . Access control strategy and performance analysis based on parent/child piconets[J]. Communications Technology, 2014, 47 (12): 1400- 1404.
doi: 10.3969/j.issn.1002-0802.2014.12.011
|
14 |
FRANCIS D. Dynamic beacon alignment in simultaneously operating piconets (SOP) using the heart beat approach[EB/OL]. [2021-01-10]. https://mentor.ieee.org/802.15/dcn/04/15-04-0135-00-0005-dynamic-beacon-alignment-for-sops.doc.
|
15 |
KHAIR M A I, MISIC V B, MISIC J. Adaptive bandwidth allocation in an 802.15.3 master-slave bridge[C]//Proc. of the International Wireless Communications and Mobile Computing Conference, 2008: 943-947.
|
16 |
刘光迪, 高唯一, 易勇. 基于IEEE 802.15.4标准的无线多跳网络的研究与实现[J]. 成都大学学报(自然科学版), 2014, 33 (1): 41- 43.
doi: 10.3969/j.issn.1004-5422.2014.01.013
|
|
LIU G D , GAO W Y , YI Y . Research and implementation of wireless multi-hop networks based on IEEE 802.15.4 standard[J]. Journal of Chengdu University (Natural Science Edition), 2014, 33 (1): 41- 43.
doi: 10.3969/j.issn.1004-5422.2014.01.013
|
17 |
田晶磊, 金德鹏. 多跳场景下ECMA-368重叠信标期融合算法的研究与改进[J]. 内蒙古大学学报(自然版), 2010, 41 (3): 340- 345.
|
|
TIAN J L , JIN D P . Study and improvement of ECMA-368 overlapping BPs merger algorithm in multi-hop WPAN[J]. Journal of Inner Mongolia University, 2010, 41 (3): 340- 345.
|
18 |
XUE P , GONG P , DUK K M . Enhanced IEEE 802.15.3 MAC protocol for efficient support of multiple simultaneously operating piconets[J]. IEEE Trans.on Vehicular Technology, 2008, 57 (4): 2548- 2559.
doi: 10.1109/TVT.2007.912323
|
19 |
石川. 基于无线自组网的装备故障申告与可视化技术研究与实现[D]. 长沙: 国防科学技术大学, 2010.
|
|
SHI C. Research and implementation of real-time advertising system of equipment failure based on MANET[D]. Changsha: National University of Defense Technology, 2010.
|
20 |
LAKSHMINARAYANAN K , CAESAR M , RANGAN M , et al. Achieving convergence-free routing using failurecarrying packets[J]. ACM SIGCOMM Computer Communication Review, 2007, 37 (4): 241- 252.
doi: 10.1145/1282427.1282408
|
21 |
XIA Q , HOSSAIN Z , MEDLEY M J , et al. A link-layer synchronization and medium access control protocol for terahertz-band communication networks[J]. IEEE Trans.on Mobile Computing, 2021, 20 (1): 2- 18.
doi: 10.1109/TMC.2019.2940441
|
22 |
PETROV V , KOMAROV M , JORNET J M , et al. Interfe-rence and SINR in millimeter wave and terahertz communication systems with blocking and directional antennas[J]. IEEE Trans.on Wireless Communication, 2017, 16 (3): 1791- 1808.
doi: 10.1109/TWC.2017.2654351
|
23 |
TONG W X, HAN C. MRA-MAC: a multi-radio assisted medium access control in terahertz communication networks[C]//Proc. of the IEEE Global Communications Conference, 2017.
|
24 |
YAO Y K , ZHAO Z J , LI Q C , et al. High efficient dual-channel MAC protocol for terahertz networks[J]. Study on Optical Communications, 2020, 217 (6): 58- 65.
|
25 |
ZHOU X , ZHOU H D , REN Z , et al. Efficient and fast dual-channel MAC protocol for terahertz wireless personal area networks[J]. Journal of Computer Applications, 2018, 38 (5): 1436- 1441.
|
26 |
USHAKOV A , CHIZHOV P , BUKIN V , et al. Multiple filamentation effects on THz radiation pattern from laser plasma in air[J]. Photonics, 2020, 8 (1): 112- 118.
|
27 |
SHIN J , KIM H W , BAEK I H , et al. Sub-10-fs timing for ultrafast electron diffraction with THz-driven streak camera[J]. Laser & Photonics Reviews, 2020, 15 (2): 156- 162.
|
28 |
ZHANG X F , HAN C , WANG X D . Dual-radio-assisted (DRA) MAC protocols for distributed terahertz networks[J]. Journal of Vehicular Technology, 2021, 2 (2): 111- 124.
|
29 |
任智, 康健, 徐兆坤, 等. 太赫兹无线个域网高时隙利用率跨PAN数据传输协议[J]. 计算机应用研究, 2020, 37 (8): 2513- 2516.
|
|
REN Z , KANG J , XU Z K , et al. High time slot utilization cross PAN data transmission protocol for terahertz wireless personal area network[J]. Application Research of Computers, 2020, 37 (8): 2513- 2516.
|
30 |
田洁丽. 太赫兹无线个域网跨PAN数据传输机制研究[D]. 重庆: 重庆邮电大学, 2018.
|
|
TIAN J L. A study on inter-PAN data transmission mechanism of terahertz wireless personal area networks[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2018.
|