1 |
LU J , CHEN X , LUO M X , et al. Cooperative localization for multiple AUVs based on the rough estimation of the measurements[J]. Applied Soft Computing, 2020, 91, 106197.
doi: 10.1016/j.asoc.2020.106197
|
2 |
LING H F , ZHU T , HE W X , et al. Cooperative search method for multiple AUVs based on target clustering and path optimi-zation[J]. Natural Computing, 2021, 20, 3- 10.
doi: 10.1007/s11047-019-09749-3
|
3 |
YAN Z P, HAO Y S, LI J. Multi-UUV collaborative search planning based on predictive control and backtracking[C]//Proc. of the IEEE 38th Chinese Control Conference, 2019: 2266-2271.
|
4 |
DING Y M, LIU C Y, LU Q, et al. Effectiveness evaluation of UUV cooperative combat based on GAPSO-BP neural network[C]//Proc. of the IEEE 31st Chinese Control and Decision Conference, 2019: 4620-4625.
|
5 |
SUN S Q , SONG B W , WANG P , et al. Real-time mission-motion planner for multi-UUVs cooperative work using tri-level programing[J]. IEEE Trans.on Intelligent Transportation Systems, 2022, 23 (2): 1260- 1273.
doi: 10.1109/TITS.2020.3023819
|
6 |
ZHOU J J, ZHANG Q, WANG H J, et al. Multi-UUV formation coordination control based on virtual navigator[C]//Proc. of the IEEE 39th Chinese Control Conference, 2020: 2090-2095.
|
7 |
HU J W, JIN B, LI H P, et al. A DMPC-based approach to circular cooperative path-following control of unmanned underwater vehicles[C]//Proc. of the IEEE 28th International Symposium on Industrial Electronics, 2019: 1207-1212.
|
8 |
LIANG Q W , SUN T Y , OU J L . System reliable probability for multi-AUV cooperative systems under the influence of current[J]. The Journal of Navigation, 2019, 72 (6): 1649- 1659.
doi: 10.1017/S0373463319000298
|
9 |
张伟, 王乃新, 魏世琳, 等. 水下无人潜航器集群发展现状及关键技术综述[J]. 哈尔滨工程大学学报, 2020, 41 (2): 289- 297.
|
|
ZHANG W , WANG N X , WEI S L , et al. Overview of unmanned underwater vehicle swarm development status and key technologies[J]. Journal of Harbin Engineering University, 2020, 41 (2): 289- 297.
|
10 |
XU H X , JIANG C L . Heterogeneous oceanographic exploration system based on USV and AUV: a survey of developments and challenges[J]. Journal of University of Chinese Academy of Sciences, 2021, 38 (2): 145- 159.
|
11 |
GERMAN C R, JAKUBA M V, KINSEY J C, et al. A long term vision for long-range ship-free deep ocean operations: persistent presence through coordination of autonomous surface vehicles and autonomous underwater vehicles[C]//Proc. of the IEEE Autonomous Underwater Vehicles, 2012.
|
12 |
NAKATANI T, HYAKUDOME T, SAWA T, et al. ASV MAINAMI for AUV monitoring and its sea trial[C]//Proc. of the IEEE/OES Autonomous Underwater Vehicles, 2016: 301-306.
|
13 |
PROCTOR A, ZARAYSKAYA Y, BAZHENOVA E, et al. Unlocking the power of combined autonomous operations with underwater and surface vehicles: success with a deep-water survey AUV and USV mothership[C]//Proc. of the OCEANS-MTS/IEEE Kobe Techno-Ocean, 2018.
|
14 |
NORGREN P, LUDVIGSEN M, INGEBRETSEN T, et al. Tracking and remote monitoring of an autonomous underwater vehicle using an unmanned surface vehicle in the Trondheim fjord[C]//Proc. of the IEEE Oceans, 2015.
|
15 |
INABA S, SASANO M, KIM K, et al. Tracking experiment of multiple AUVs by a semi-submersible ASV[C]//Proc. of the IEEE Underwater Technology, 2017.
|
16 |
JI D X, REN S Z, ZHENG R, et al. A tracking control method of ASV following AUV[C]//Proc. of the IEEE Oceans, 2013.
|
17 |
RODIONOV A Y, KULIK S Y, UNRU P P. Some trial results of the hydro acoustical communication system operation for AUV and ASV group control and navigation[C]//Proc. of the MTS/IEEE OCEANS, 2016.
|
18 |
SASANO M, INABA S, OKAMOTO A, et al. Development of a semi-submersible autonomous surface vehicle for control of multiple autonomous underwater vehicles[C]//Proc. of the IEEE Techno-Ocean, 2017: 309-312.
|
19 |
NAKATANI T, HYAKUDOME T, SAWA T, et al. Deve-lopment of an autonomous surface vehicle for monitoring underwater vehicles[C]//Proc. of the MTS/IEEE OCEANS, 2015.
|
20 |
VALENTE J, BARRIENTOS A, CERRO J D, et al. Multi-robot visual coverage path planning: geometrical metamorphosis of the workspace through raster graphics based approaches[C]//Proc. of the International Conference on Computational Science and its Applications, 2011: 58-73.
|
21 |
GHOSE D , GURUPRASAD K R . Automated multi-agent search using centroidal voronoi configuration[J]. IEEE Trans. on Automation Science and Engineering, 2011, 8 (2): 420- 423.
doi: 10.1109/TASE.2010.2072920
|
22 |
PEHLIVANOGLU Y V . A new vibrational genetic algorithm enhanced with a voronoi diagram for path planning of autonomous UAV[J]. Aerospace Science and Technology, 2012, 16 (1): 47- 55.
doi: 10.1016/j.ast.2011.02.006
|
23 |
HU J W , XIE L H , LUM K Y , et al. Multiagent information fusion and cooperative control in target search[J]. IEEE Trans.on Control Systems Technology, 2013, 21 (4): 1223- 1235.
doi: 10.1109/TCST.2012.2198650
|
24 |
SUN A K, LIU H. Cooperative UAV search for moving targets using a modified diffusion uncertainty model[C]//Proc. of the AIAA Guidance, Navigation, and Control Conference, 2009.
|
25 |
ZHEN Z J , XING D J , GAO C . Cooperative search-attack mission planning for multi-UAV based on intelligent self-organized algorithm[J]. Aerospace Science & Technology, 2018, 76 (1): 402- 411.
|
26 |
HU J W , XIE L H , XU J , et al. Multi-agent cooperative target search[J]. Sensors, 2014, 14 (6): 9408- 9428.
doi: 10.3390/s140609408
|
27 |
KHAN A, YANMAZ E, RINNER B. Information merging in multi-UAV cooperative search[C]//Proc. of the IEEE International Conference on Robotics and Automation, 2014: 3122-3129.
|
28 |
黄杰, 孙伟, 高渝. 双属性概率图优化的无人机集群协同目标搜索[J]. 系统工程与电子技术, 2020, 42 (1): 118- 127.
|
|
HUANG J , SUN W , GAO Y . Cooperative searching for the multi-UAVs based on dual-attribute probability model optimization[J]. Systems Engineering and Electronics, 2020, 42 (1): 118- 127.
|
29 |
彭辉, 沈林成, 朱华勇. 基于分布式模型预测控制的多UAV协同区域搜索[J]. 航空学报, 2010, 31 (3): 593- 601.
|
|
PENG H , SHEN L C , ZHU H Y . Multiple UAV cooperative area search based on distributed model predictive control[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31 (3): 593- 601.
|
30 |
张哲璇, 龙腾, 徐广通, 等. 重访机制驱动的多无人机协同动目标搜索方法[J]. 航空学报, 2020, 41 (5): 220- 232.
|
|
ZHANG Z X , LONG T , XU G T , et al. Revisit mechanism driven multi-UAV cooperative search planning method for moving targets[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41 (5): 220- 232.
|
31 |
马威强, 高永琪, 赵苗. 基于全局最优和差分变异的头脑风暴优化算法[J]. 系统工程与电子技术.https://kns.cnki.net/kcms/detail/11.2422.TN.20210531.0826.002.html.
|
|
MA W Q, GAO Y Q, ZHAO M. Global-best difference-mutation brain storm optimization algorithm[J]. Systems Engineering and Electronics.https://kns.cnki.net/kcms/detail/11.2422.TN.20210531.0826.002.html.
|
32 |
SHI Y H. Brain storm optimization algorithm[C]//Proc. of the 2nd International Conference on Swarm Intelligence, 2011: 303-309.
|