1 |
ZENG Z G, CHEN G H. Adaptive predictive based on equal-dimension and new information for the hydraulic mechanism of wave motion compensating platform[C]//Proc. of the International Conference on Information Technology for Manufacturing Systems, 2010: 236-242.
|
2 |
HU X , DU J L , LI J , et al. Asymptotic regulation of dynamically positioned vessels with unknown dynamics and external disturbances[J]. The Journal of Navigation, 2020, 73 (2): 253- 266.
doi: 10.1017/S0373463319000390
|
3 |
HU X , DU J L , ZHU G B , et al. Robust adaptive NN control of dynamically positioned vessels under input constraints[J]. Neurocomputing, 2018, 318, 201- 212.
doi: 10.1016/j.neucom.2018.08.056
|
4 |
HUA T, ZHANG H, XIE K F. Robust sliding mode control of offshore parallel platform[C]//Proc. of the International Confer-ence on Automation, Control and Robotics Engineering, 2019.
|
5 |
CAI M J, QI J C, QIN X P. Fuzzy sliding-mode control for a parallel adjusting mechanism system[C]//Proc. of the IEEE 8th International Conference on Fuzzy Systems and Knowledge Discovery, 2011: 834-838.
|
6 |
YANG X L , WU H T , LI Y , et al. Dynamics and isotropic control of parallel mechanisms for vibration isolation[J]. IEEE/ASME Trans.on Mechatronics, 2020, 25 (4): 2027- 2034.
doi: 10.1109/TMECH.2020.2996641
|
7 |
崔恒荣, 秦雅, 卞玮章. 基于模糊控制参数自整定的舰载雷达三轴稳定控制[J]. 雷达与对抗, 2020, 40 (1): 57- 60.
|
|
CUI H R , QIN Y , BIAN W Z . Three-axis stability control of shipborne radars based on self-tuning fuzzy control parameters[J]. Radar and ECM, 2020, 40 (1): 57- 60.
|
8 |
杨蒲, 李奇. 陀螺稳定平台非线性摩擦的灰色滑模控制[J]. 系统工程与电子技术, 2008, 30 (7): 1328- 1332.
|
|
YANG P , LI Q . Nonlinear friction grey sliding mode control for gyro stabilized platform[J]. Systems Engineering and Electronics, 2008, 30 (7): 1328- 1332.
|
9 |
QU J H , XIA Y Q , SHI Y P , et al. Modified ADRC for inertial stabilized platform with corrected disturbance compensation and improved speed observer[J]. IEEE Access, 2020, 8, 157703- 157716.
doi: 10.1109/ACCESS.2020.3020143
|
10 |
DONG M , ZHU Q Y . Active disturbance rejection control strategy for airborne radar stabilization platform based on cascade extended state observer[J]. Assembly Automation, 2020, 40 (4): 613- 624.
doi: 10.1108/AA-10-2019-0178
|
11 |
LIU Z L , WU J , WANG D . An engineering-oriented motion accuracy fluctuation suppression method of a hybrid spray-painting robot considering dynamics[J]. Mechanism and Machine Theory, 2019, 131, 62- 74.
doi: 10.1016/j.mechmachtheory.2018.09.015
|
12 |
XU P , CHEUNG C F , LI B , et al. Kinematics analysis of a hybrid manipulator for computer controlled ultra-precision freeform polishing[J]. Robotics and Computer-Integrated Manufacturing, 2017, 44, 44- 56.
doi: 10.1016/j.rcim.2016.08.003
|
13 |
WU J , YU G , GAO Y , et al. Mechatronics modeling and vibration analysis of a 2-DOF parallel manipulator in a 5-DOF hybrid machine tool[J]. Mechanism and Machine Theory, 2018, 121, 430- 445.
doi: 10.1016/j.mechmachtheory.2017.10.023
|
14 |
李玉昆. 3-UPS/S并联稳定平台的性能分析与稳定补偿实验研究[D]. 秦皇岛: 燕山大学, 2018.
|
|
LI Y K. The performance analysis and stability compensation experiment of 3-UPS/S parallel stability platform[D]. Qinhuangdao: Yanshan University, 2018.
|
15 |
ZHANG B, SHANG W W. Kinematic control of a 3-DOF pa-rallel stabilization platform[C]//Proc. of the IEEE Chinese Control Conference, 2014: 8287-8292.
|
16 |
RUBIO E, PRIETO P J, HERNÁNDEZ L, et al. Comparison between three control strategy applied to an electro-pneumatic 3-DOF platform[C]//Proc. of the IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, 2019.
|
17 |
DE ZEEUW W A. Ship motion compensation platform for high payloads[D]. Delft: Delft University of Technology, 2012.
|
18 |
QIANG H B , JIN S , FENG X Y , et al. Model predictive control of a shipborne hydraulic parallel stabilized platform based on ship motion prediction[J]. IEEE Access, 2020, 8, 181880- 181892.
doi: 10.1109/ACCESS.2020.2992458
|
19 |
LIU S W , PENG G L , GAO H J . Dynamic modeling and terminal sliding mode control of a 3-DOF redundantly actuated parallel platform[J]. Mechatronics, 2019, 60, 26- 33.
doi: 10.1016/j.mechatronics.2019.04.001
|
20 |
赵星宇. 并联式复合驱动舰载稳定平台理论与实验研究[D]. 秦皇岛: 燕山大学, 2018.
|
|
ZHAO X Y. Theoretical and experimental research of parallel compound driving ship-based stable platform[D]. Qinhuangdao: Yanshan University, 2018.
|
21 |
许猛, 杜佳璐, 贺广健, 等. 基于ADRC的并联三自由度船载稳定平台稳定控制律设计[J]. 大连海事大学学报, 2020, 46 (1): 20- 28.
|
|
XU M , DU J L , HE G J , et al. Stability control of parallel three-DOF ship-borne stabilization platform based on ADRC[J]. Journal of Dalian Maritime University, 2020, 46 (1): 20- 28.
|
22 |
ZHANG G Q , ZHANG X K . A novel DVS guidance principle and robust adaptive path-following control for underactuated ships using low frequency gain-learning[J]. ISA Transactions, 2015, 56, 75- 85.
doi: 10.1016/j.isatra.2014.12.002
|
23 |
LI S H , WANG X Y . Finite-time consensus and collision avoidance control algorithms for multiple AUVs[J]. Automatica, 2013, 49 (11): 3359- 3367.
doi: 10.1016/j.automatica.2013.08.003
|
24 |
ZUO Z Y , TIE L . A new class of finite-time nonlinear consensus protocols for multi-agent systems[J]. International Journal of Control, 2014, 87 (2): 363- 370.
doi: 10.1080/00207179.2013.834484
|
25 |
FOSSEN T I . Handbook of marine craft hydrodynamics and motion control[M]. Chichester: Wiley, 2011.
|