1 |
高杰, 秦文振, 张金江, 等. 基础序列长度EOP预报精度影响分析[J]. 测绘与空间地理信息, 2020, 43 (9): 134- 135.
doi: 10.3969/j.issn.1672-5867.2020.09.034
|
|
GAO J , QIN W Z , ZHANG J J , et al. Analysis of influence of basic sequence length on the accuracy of EOP prediction[J]. Geomatics & Spatial Information Technology, 2020, 43 (9): 134- 135.
doi: 10.3969/j.issn.1672-5867.2020.09.034
|
2 |
王广利, 徐明辉. 利用IVS加强观测确定UT1的分析研究[J]. 天文学报, 2012, 53 (3): 222- 229.
doi: 10.3969/j.issn.0001-5245.2012.03.005
|
|
WANG G L , XU M H . The analysis of UT1 determined by IVS intensive observations[J]. Acta Astronomica Sinica, 2012, 53 (3): 222- 229.
doi: 10.3969/j.issn.0001-5245.2012.03.005
|
3 |
NASTULA J , CHIN T M , GROSS R , et al. Smoothing and predicting celestial pole offsets using a Kalman filter and smoother[J]. Journal of Geodesy, 2020, 94 (3): 2- 17.
doi: 10.1007/s00190-020-01349-9
|
4 |
GAMBIS D , LUZUM B . Earth rotation monitoring, UT1 determination and prediction[J]. Metrologia, 2011, 48 (4): 165- 170.
doi: 10.1088/0026-1394/48/4/S06
|
5 |
徐天河, 王潜心, 于素梅, 等. 利用区域网GPS/BDS数据确定地球自转参数[J]. 导航定位学报, 2015, 3 (3): 13- 17.
|
|
XU T H , WANG Q X , YU S M , et al. Earth rotation parameters determination using local GPS/BDS network data[J]. Journal of Navigation and Positioning, 2015, 3 (3): 13- 17.
|
6 |
张永浩, 成英燕, 王虎, 等. BDS与GPS数据解算地球自转参数精度分析[J]. 测绘科学, 2018, 43 (12): 13- 14.
|
|
ZHANG Y H , CHENG Y Y , WANG H , et al. Analysis of earth rotation parameters accuracy based on BDS and GPS data[J]. Science of Surveying and Mapping, 2018, 43 (12): 13- 14.
|
7 |
BIZOUARD C, GAMBIS D. The combined solution C04 for earth orientation parameters consistent with international terrestrial reference frame 2005[C]//Proc. of the International Association of Geodesy Symposium, 2009: 265-270.
|
8 |
GAMBIS D . Monitoring earth orientation using space-geodetic techniques: state of the art and prospective[J]. Journal of Geodesy, 2004, 78 (4): 295- 303.
|
9 |
RAY J , KAUBA J , ALTAMIMI Z . Is there utility in rigorous combinations of VLBI and GPS earth orientation parameters?[J]. Journal of Geodesy, 2005, 79 (9): 505- 511.
doi: 10.1007/s00190-005-0007-7
|
10 |
FERLAND R , PIRASZEWSKI M . The IGS combined stations coordinates, earth rotation parameters and apparent geocenter[J]. Journal of Geodesy, 2009, 83 (5): 385- 392.
|
11 |
THALLER D , KRUGEL M , ROTHACHE M , et al. Combined earth orientations parameters based on homogeneous and continuous VLBI and GPS data[J]. Journal of Geodesy, 2007, 81 (8): 529- 541.
doi: 10.1007/s00190-006-0115-z
|
12 |
ARTZ T , BERNHARD L , NOTHNAGEL A , et al. Methodology for the combination of sub-daliy earth rotation from GPS and VLBI observations[J]. Journal of Geodesy, 2012, 86 (3): 221- 239.
doi: 10.1007/s00190-011-0512-9
|
13 |
郝亮, 章传银. 地球自转参数的空间大地测量方法探讨[J]. 科技与创新, 2017, (2): 7- 8.
|
|
HAO L , ZHANG C Y . Discussion on space geodesy method of earth rotation parameters[J]. Science and Technology & Innovation, 2017, (2): 7- 8.
|
14 |
MALKIN Z . The impact of celestial pole offset modelling on VLBI UT1 intensive result[J]. Journal of Geodesy, 2011, 85 (9): 617- 622.
doi: 10.1007/s00190-011-0468-9
|
15 |
LIU X X, WEI E H, WANG L X. Calculating high frequency earth rotation parameters using GPS observations and precision analysis[C]//Proc. of the 8th China Satellite Navigation Conference, 2017: 32-42.
|
16 |
张志斌, 王广利, 刘祥, 等. 中国VLBI网观测地球定向参数能力分析[J]. 武汉大学学报, 2013, 38 (8): 911- 915.
|
|
ZHANG Z B , WANG G L , LIU X , et al. Analysis of EOP determination via Chinese VLBI network[J]. Geomatics and Information Science of Wuhan University, 2013, 38 (8): 911- 915.
|
17 |
张军杰. 联合VLBI和GNSS解算地球自转参数方法及软件实现[D]. 北京: 中国矿业大学, 2018.
|
|
ZHANG J J. Estimation of earth rotation parameters based on the combination of VLBI and GNSS technologies and its software realization[D]. Beijing: China University of Mining and Technology, 2018.
|
18 |
王广利, 李金岭, 钱志瀚, 等. 利用天测与测地VLBI观测建立天球与地球参考架[J]. 测绘学报, 2000, 29 (2): 114- 117.
doi: 10.3321/j.issn:1001-1595.2000.02.004
|
|
WANG G L , LI J L , QIAN Z H , et al. The determinations of celestial and terrestrial reference frames from astrometric and geodetic VLBI observations[J]. Acta Geodaetica et Cartographica Sinica, 2000, 29 (2): 114- 117.
doi: 10.3321/j.issn:1001-1595.2000.02.004
|
19 |
WEI E H , YAN W , JIN S G , et al. Improvement of earth orientation parameters estimate with Chang'E-1 delta VLBI observations[J]. Journal of Geodynamics, 2013, 72, 46- 52.
doi: 10.1016/j.jog.2013.04.001
|
20 |
魏二虎, 刘文杰, WEIJianan, 等. VLBI和GPS观测联合解算地球自转参数和日长变化[J]. 武汉大学学报(信息科学版), 2016, 41 (1): 66- 71.
|
|
WEI E H , LIU W J , WEI J N , et al. Calculation of earth rotation parameters and day length variation by joint observation[J]. Geomatics and Information Science of Wuhan University, 2016, 41 (1): 66- 71.
|
21 |
GAMBIS D, BIZOUARD C. Monitoring UT1 from astro-geodetic techniques at the EOP Center of the IERS[C]//Proc. of the 28th IAU General Assembly, 2009: 207-208.
|
22 |
GAMBIS D, BIZOUARD C. Monitoring UT1 using both VLBI and GPS estimates[C]//Proc. of the 19th European VLBI for Geodesy and Astrometry Working Meeting, 2009: 24-25.
|
23 |
FREEDMAN A P , STEPPE J A , DICKEY J O , et al. The short-term prediction of universal time and length of day using atmospheric angular-momentum[J]. Journal of Geophysical Research-Solid Earth, 1994, 99 (B4): 6981- 6996.
doi: 10.1029/93JB02976
|
24 |
SENIOR K , KOUBA J , RAY J . Status and prospects for combined GPS LOD and VLBI UT1 measurements[J]. Artificial Satellites, 2010, 45 (2): 57- 72.
doi: 10.2478/v10018-010-0006-7
|
25 |
NILSSON T , KARBON M , SOJA B , et al. Rapid UT1 estimation by combining VLBI intensives with GNSS[J]. International Association of Geodesy Symposia, 2016, 150 (143): 521- 526.
|
26 |
VONDRAK J , CEPEK A . Combined smoothing method and its use in combining Earth orientation parameters measured by space techniques[J]. Astronomy & Astrophysics, 2000, 12 (1): 347- 359.
doi: 10.1051/aas:2000306
|
27 |
曾安敏, 张琦, 孙中苗. 一种附加边界约束和内约束的多中心ERP融合模型[J]. 武汉大学学报(信息科学版), 2019, 44 (12): 1771- 1776.
|
|
ZENG A M , ZHANG Q , SUN Z M . A multicenter ERP fusion model with boundary and internal constraints[J]. Geomatics and Information Science of Wuhan University, 2019, 44 (12): 1771- 1776.
|
28 |
VONDRAK J . A contribution to the problem of smoothing observational data[J]. Bulletin of the Astronomical Institutes of Czechoslovakia, 1969, 20 (6): 349- 355.
|
29 |
VONDRAK J . Problem of smoothing observational data Ⅱ[J]. Bulletin of the Astronomical Institutes of Czechoslovakia, 1977, 28 (2): 84- 89.
|
30 |
曹梦成, 朱建军, 邹峥嵘, 等. Vondrak滤波在周跳探测与修复中的应用[J]. 工程勘察, 2006, (10): 54- 56.
|
|
CAO M C , ZHU J J , ZOU Z R , et al. Application of Vondrak filter in cycle slip detection and repair[J]. Journal of Geotechnical Investigation & Surveying, 2006, (10): 54- 56.
|
31 |
VAJARGAH K F , BENIS S G , GOLSHAN H M . Detection of the quality of vital signals by the Monte Carlo Markov chain (MCMC) method and noise deleting[J]. Health Information Science and Systems, 2021, 9 (1): 2- 10.
doi: 10.1007/s13755-020-00135-3
|
32 |
HU G Y , WANG H Y . Most likely optimal subsampled Mar-kov chain Monte Carlo[J]. Journal of Systems Science & Complexity, 2021, 34 (3): 1121- 1134.
doi: 10.1007/s11424-020-9335-1
|
33 |
LIAO M Y . Efficient technique for assessing actual non-normal quality loss: Markov chain Monte Carlo[J]. Quality and Reliability Engineering International, 2017, 33 (5): 945- 957.
doi: 10.1002/qre.2071
|
34 |
XU S F , XIE L , LIU J L . Robot localization based on MCMC particle filter[J]. Journal of Zhejiang University (Engineering Science), 2007, 41 (7): 1083- 1087.
doi: 10.1007/s10483-007-0613-x
|
35 |
HUFFER F W , WU H L . Markov chain Monte Carlo for autologistic regression models with application to the distribution of plant species[J]. Biometrics, 1998, 54 (2): 509- 524.
doi: 10.2307/3109759
|
36 |
HAARIO H , SAKSMAN E , TAMMINEN J . Componentwise adaptation for high dimensional MCMC[J]. Computational Statistics, 2005, 20 (2): 265- 273.
doi: 10.1007/BF02789703
|
37 |
MALKIN Z . Impact of seasonal station motions on VLBI UT1 intensives results[J]. Journal of Geodesy, 2013, 87 (6): 505- 514.
doi: 10.1007/s00190-013-0624-5
|
38 |
MACMILLAN D S . EOP and scale from continuous VLBI observing: CONT campaigns to future VGOS networks[J]. Journal of Geodesy, 2017, 91 (7): 819- 829.
doi: 10.1007/s00190-017-1003-4
|
39 |
姚当, 弓剑军, 马浪明, 等. 基于VGOS系统的UT1初步观测与计算[J]. 时间频率学报, 2018, 41 (3): 234- 240.
|
|
YAO D , GONG J J , MA L M , et al. The preliminary test observation of UT1 with the VGOS system[J]. Journal of Time and Frequency, 2018, 41 (3): 234- 240.
|
40 |
YAO D , WU W W , ZHANG B , et al. The NTSC VLBI system and its application in UT1 measurement[J]. Research in Astronomy and Astrophysics, 2020, 20 (6): 153- 162.
doi: 10.1088/1674-4527/20/6/93
|