系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (5): 1543-1552.doi: 10.12305/j.issn.1001-506X.2022.05.15

• 传感器与信号处理 • 上一篇    下一篇

生成式中断航迹接续关联方法

徐平亮, 崔亚奇*, 熊伟, 熊振宇, 顾祥岐   

  1. 海军航空大学信息融合研究所, 山东 烟台 264001
  • 收稿日期:2021-01-30 出版日期:2022-05-01 发布日期:2022-05-16
  • 通讯作者: 崔亚奇
  • 作者简介:徐平亮(1997—), 男, 硕士研究生, 主要研究方向为多源信息融合、航迹关联|崔亚奇(1987—), 男, 讲师, 博士, 主要研究方向为多源信息融合、模式识别|熊伟(1977—), 男, 教授, 博士, 主要研究方向为多源信息融合、模式识别|熊振宇(1995—), 男, 硕士研究生, 主要研究方向为多源信息融合、计算机视觉|顾祥岐(1995—), 男, 博士研究生, 主要研究方向为多源信息融合、目标跟踪
  • 基金资助:
    国家自然科学基金(61790554);国家自然科学基金(62001499)

Generative track segment consecutive association method

Pingliang XU, Yaqi CUI*, Wei XIONG, Zhenyu XIONG, Xiangqi GU   

  1. Research Institute of Information Fusion, Naval Aviation University, Yantai 264001, China
  • Received:2021-01-30 Online:2022-05-01 Published:2022-05-16
  • Contact: Yaqi CUI

摘要:

传统中断航迹接续关联(track segment consecutive association, TSCA)方法基于假设的目标运动模型, 利用大量先验信息完成关联任务, 存在参数过多、计算复杂、推理时间长等缺点。为了解决以上问题, 提出一种基于注意力机制的生成式TSCA方法。首先设计航迹态势图生成模块, 将原始航迹数据转换为航迹态势图, 作为生成对抗网络的输入。针对航迹噪声影响大和航迹运动特征、中断特征难以提取的问题, 基于生成对抗网络和注意力机制, 设计航迹关联网络, 滤除航迹噪声并完成TSCA。仿真结果证明了所提网络的有效性, 在关联精度和关联速度两方面都超过现有算法。

关键词: 中断航迹接续关联, 生成对抗网络, 注意力机制, 航迹态势图

Abstract:

Traditional track segment consecutive association (TSCA) methods are based on the hypothesis target motion model and need to use a lot of prior information. It has many disadvantages such as too many parameters, complicated calculation and long reasoning time. In order to solve the above problems, a generative TSCA method based on the attention mechanism is proposed. Firstly, the module of generating the track situation map is designed, and the original track data is converted into the track situation map as the input of generative adversarial network. Aiming at the problems of track noise and the difficulty in extracting the features of track motion and track interruption, based on the generative adversarial network and the attention mechanism, the track association network is designed to filter out the noise of tracks and accomplish TSCA. The simulation results show that the proposed method is effective and exceeds the existing algorithms in both precision and speed.

Key words: track segment consecutive association (TSCA), generative adversarial network, attention mechanism, track situation map

中图分类号: