系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (5): 1543-1552.doi: 10.12305/j.issn.1001-506X.2022.05.15
徐平亮, 崔亚奇*, 熊伟, 熊振宇, 顾祥岐
收稿日期:
2021-01-30
出版日期:
2022-05-01
发布日期:
2022-05-16
通讯作者:
崔亚奇
作者简介:
徐平亮(1997—), 男, 硕士研究生, 主要研究方向为多源信息融合、航迹关联|崔亚奇(1987—), 男, 讲师, 博士, 主要研究方向为多源信息融合、模式识别|熊伟(1977—), 男, 教授, 博士, 主要研究方向为多源信息融合、模式识别|熊振宇(1995—), 男, 硕士研究生, 主要研究方向为多源信息融合、计算机视觉|顾祥岐(1995—), 男, 博士研究生, 主要研究方向为多源信息融合、目标跟踪
基金资助:
Pingliang XU, Yaqi CUI*, Wei XIONG, Zhenyu XIONG, Xiangqi GU
Received:
2021-01-30
Online:
2022-05-01
Published:
2022-05-16
Contact:
Yaqi CUI
摘要:
传统中断航迹接续关联(track segment consecutive association, TSCA)方法基于假设的目标运动模型, 利用大量先验信息完成关联任务, 存在参数过多、计算复杂、推理时间长等缺点。为了解决以上问题, 提出一种基于注意力机制的生成式TSCA方法。首先设计航迹态势图生成模块, 将原始航迹数据转换为航迹态势图, 作为生成对抗网络的输入。针对航迹噪声影响大和航迹运动特征、中断特征难以提取的问题, 基于生成对抗网络和注意力机制, 设计航迹关联网络, 滤除航迹噪声并完成TSCA。仿真结果证明了所提网络的有效性, 在关联精度和关联速度两方面都超过现有算法。
中图分类号:
徐平亮, 崔亚奇, 熊伟, 熊振宇, 顾祥岐. 生成式中断航迹接续关联方法[J]. 系统工程与电子技术, 2022, 44(5): 1543-1552.
Pingliang XU, Yaqi CUI, Wei XIONG, Zhenyu XIONG, Xiangqi GU. Generative track segment consecutive association method[J]. Systems Engineering and Electronics, 2022, 44(5): 1543-1552.
1 | YEOM S W, KIRUBARAJAN T, BAR S Y. Improving track continuity using track segment association[C]//Proc. of the IEEE Aerospace Conference, 2003. |
2 | SUN J P, WANG N Y, ZHANG Z G. Track segment association of maneuvering target based on expectation maximization[C]//Proc. of the 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, 2018. |
3 |
ZHANG S , BAR S Y . Track segment association for GMTI tracks of evasive move-stop-move maneuvering targets[J]. IEEE Trans.on Aerospace and Electronic Systems, 2011, 47 (3): 1899- 1914.
doi: 10.1109/TAES.2011.5937272 |
4 |
DEMPSTER A P , LAIRD N M , RUBIN D B . Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1977, 39 (1): 1- 22.
doi: 10.1111/j.2517-6161.1977.tb01600.x |
5 | ZHU H Y , HAN S Y . Track-to-track association based on structural similarity in the presence of sensor biases[J]. Journal of Applied Mathematics, 2014, 294657. |
6 | 杜渐, 夏学知. 面向航迹中断的模糊航迹关联算法[J]. 火力与指挥控制, 2013, 38 (6): 68- 71. |
DU J , XIA X Z . A fuzzy track association algorithm in track interrupt-oriented[J]. Fire Control & Command Control, 2013, 38 (6): 68- 71. | |
7 |
刘颢, 陈世友, 汪学东, 等. 一种自适应航迹关联算法[J]. 电子学报, 2013, 41 (12): 2416- 2421.
doi: 10.3969/j.issn.0372-2112.2013.12.015 |
LIU H , CHEN S Y , WANG X D , et al. An adaptive track correlation algorithm[J]. Chinese Journal of Electronics, 2013, 41 (12): 2416- 2421.
doi: 10.3969/j.issn.0372-2112.2013.12.015 |
|
8 | 齐林, 王海鹏, 熊伟, 等. 基于先验信息的多假设模型中断航迹关联算法[J]. 系统工程与电子技术, 2015, 37 (4): 732- 739. |
QI L , WANG H P , XIONG W , et al. Track segment association algorithm based on multiple-hypothesis models with priori information[J]. Journal of Systems Engineering and Electronics, 2015, 37 (4): 732- 739. | |
9 | DONG H, YU S M, WU C, et al. Semantic image synthesis via adversarial learning[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 5706-5714. |
10 | KANEKO T, HIRAMATSU K, KASHINO K. Generative attribute controller with conditional filtered generative adversarial networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. |
11 | KARACAN L, AKATA Z, ERDEM A, et al. Learning to generate images of outdoor scenes from attributes and semantic layouts[EB/OL]. [2021-01-25]. https://arXiv.org/pdf/1612.00215.pdf. |
12 | LEDIG C, THEIS L, HUSZAR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4681-4690. |
13 | PATHAK D, KRAHENBUHL P, DONAHUE J, et al. Context encoders: feature learning by inpainting[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2536-2544. |
14 | SANGKLOY P, LU J W, FANG C, et al. Scribbler: controlling deep image synthesis with sketch and color[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 5400-5409. |
15 | WANG X L, GUPTA A. Generative image modeling using style and structure adversarial networks[C]//Proc. of the European Conference on Computer Vision, 2016: 318-335. |
16 | ZHANG Z F, SONG Y, QI H R. Age progression/regression by conditional adversarial autoencoder[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 5810-5818. |
17 | GOODFELLOW I , POUGET A J , MIRZA M , et al. Generative adversarial nets[J]. Advances in Neural Information Processing Systems, 2014, 27, 2672- 2680. |
18 | MNIH V , HEESS N , GRAVES A . Recurrent models of visual attention[J]. Advances in Neural Information Processing Systems, 2014, 2, 2204- 2212. |
19 | WANG K F , GOU C , DUAN Y J , et al. Generative adversa-rial networks: the state of the art and beyond[J]. Acta Automatica Sinica, 2017, 43 (3): 321- 332. |
20 | VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]//Proc. of the 25th International Conference on Machine Learning, 2008: 1096-1103. |
21 | ULYANOV D, VEDALDI A, LEMPITSKY V. Instance normalization: the missing ingredient for fast stylization[EB/OL]. [2021-01-25]. https//arXiv.org/abs/1607.08022v1. |
22 | GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]//Proc. of the 14th International Confe-rence on Artificial Intelligence and Statistics, 2011: 315-323. |
23 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. |
24 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2021-01-25]. https//arXiv.org/abs/1409.1556. |
25 | DUMOULIN V, VISIN F. A guide to convolution arithmetic for deep learning[EB/OL]. [2021-01-25]. https//arXiv.org/abs/1603.07285. |
26 | PENG X B, KANAZAWA A, TOYER S, et al. Variational discriminator bottleneck: improving imitation learning, inverserl, and gans by constraining information flow[EB/OL]. [2021-01-25]. https//arXiv.org/abs/1810.00821v4. |
27 | RATLIFF L J, BURDEN S A, SASTRY S S. Characterization and computation of local Nash equilibria in continuous games[C]//Proc. of the IEEE 51st Annual Allerton Conference on Communication, Control, and Computing, 2013: 917-924. |
28 | ZHAO H , GALLO O , FROSIO I , et al. Loss functions for image restoration with neural networks[J]. IEEE Trans.on Computational Imaging, 2016, 3 (1): 47- 57. |
29 |
LI X R , JILKOV V P . Survey of maneuvering target tracking. Part I. dynamic models[J]. IEEE Trans.on Aerospace and Electronic Systems, 2003, 39 (4): 1333- 1364.
doi: 10.1109/TAES.2003.1261132 |
30 |
WANG Z , BOVIK A C , SHEIKH H R , et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Trans.on Image Processing, 2004, 13 (4): 600- 612.
doi: 10.1109/TIP.2003.819861 |
31 | PASZKE A, GROSS S, MASSA F, et al. Pytorch: an imperative style, high-performance deep learning library[EB/OL]. [2021-01-25]. https//arXiv.org/abs/1912.01703v1. |
32 |
YEOM S W , KIRUBARAJAN T , BAR S Y . Track segment association, fine-step IMM and initialization with Doppler for improved track performance[J]. IEEE Trans.on Aerospace and Electronic Systems, 2004, 40 (1): 293- 309.
doi: 10.1109/TAES.2004.1292161 |
33 |
RAGHU J , SRIHARI P , THARMARASA R , et al. Comprehensive track segment association for improved track continuity[J]. IEEE Trans.on Aerospace and Electronic Systems, 2018, 54 (5): 2463- 2480.
doi: 10.1109/TAES.2018.2820364 |
[1] | 韩啸, 陈世文, 陈蒙, 杨锦程. 基于互易点学习的LPI信号开集识别[J]. 系统工程与电子技术, 2022, 44(9): 2752-2759. |
[2] | 刘戎翔, 吴琳, 谢智歌, 刘虹麟. 基于生成对抗网络的防空体系态势辅助分析[J]. 系统工程与电子技术, 2022, 44(8): 2522-2529. |
[3] | 曹鹏宇, 杨承志, 石礼盟, 吴宏超. 基于PSO-DBSCAN和SCGAN的未知雷达信号处理方法[J]. 系统工程与电子技术, 2022, 44(4): 1158-1165. |
[4] | 邵凯, 朱苗苗, 王光宇. 基于生成对抗与卷积神经网络的调制识别方法[J]. 系统工程与电子技术, 2022, 44(3): 1036-1043. |
[5] | 吴涛, 王伦文, 朱敬成. 基于迁移学习和注意力机制的伪装图像分割[J]. 系统工程与电子技术, 2022, 44(2): 376-384. |
[6] | 金涛, 王晓峰, 田润澜, 张歆东. 基于改进1DCNN+TCN的雷达辐射源快速识别方法[J]. 系统工程与电子技术, 2022, 44(2): 463-469. |
[7] | 马钰棠, 孙鹏, 张杰勇, 王鹏, 闫云飞, 赵亮. 样本不平衡下的空中群组意图识别方法[J]. 系统工程与电子技术, 2022, 44(12): 3747-3755. |
[8] | 唐一强, 杨霄鹏, 朱圣铭. 基于注意力机制的混合CNN-BiLSTM低轨卫星信道预测算法[J]. 系统工程与电子技术, 2022, 44(12): 3863-3870. |
[9] | 曲凌志, 杨俊安, 刘辉, 黄科举. 嵌入注意力机制的通信辐射源个体识别方法[J]. 系统工程与电子技术, 2022, 44(1): 20-27. |
[10] | 刘紫燕, 马珊珊, 梁静, 朱明成, 袁磊. 注意力机制CNN的毫米波大规模MIMO系统信道估计算法[J]. 系统工程与电子技术, 2022, 44(1): 307-312. |
[11] | 曹鹏宇, 杨承志, 石礼盟, 吴宏超. 基于DAE-GAN网络的LPI雷达信号增强[J]. 系统工程与电子技术, 2021, 43(9): 2493-2500. |
[12] | 崔邦彦, 田润澜, 王东风, 崔钢, 石静苑. 基于注意力机制和改进CLDNN的雷达辐射源识别[J]. 系统工程与电子技术, 2021, 43(5): 1224-1231. |
[13] | 赵凡, 金虎. 基于GAN的通信干扰波形生成技术[J]. 系统工程与电子技术, 2021, 43(4): 1080-1088. |
[14] | 高诗飏, 董会旭, 田润澜, 张歆东. 基于SRNN+Attention+CNN的雷达辐射源信号识别方法[J]. 系统工程与电子技术, 2021, 43(12): 3502-3509. |
[15] | 赵若辰, 王敬东, 林思玉, 顾东泽. 基于卷积神经网络的小型建筑物检测算法[J]. 系统工程与电子技术, 2021, 43(11): 3098-3106. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||