系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (5): 1536-1542.doi: 10.12305/j.issn.1001-506X.2022.05.14

• 传感器与信号处理 • 上一篇    下一篇

基于风格迁移不变特征的SAR与光学图像配准算法

陈世伟, 夏海*, 杨小冈, 李小锋   

  1. 火箭军工程大学导弹工程学院, 陕西 西安 710025
  • 收稿日期:2021-03-19 出版日期:2022-05-01 发布日期:2022-05-16
  • 通讯作者: 夏海
  • 作者简介:陈世伟(1979—), 男, 副教授, 博士, 主要研究方向为精确制导技术、遥感图像处理与分析|夏海(1997—), 男, 硕士研究生, 主要研究方向为图像配准技术|杨小冈(1978—), 男, 教授, 博士, 主要研究方向为机器视觉、精确制导|李小锋(1983—), 男, 讲师, 博士, 主要研究方向为精确制导技术、机器视觉
  • 基金资助:
    国家自然科学基金(61806209)

SAR and optical image registration algorithm based on style transfer invariable features

Shiwei CHEN, Hai XIA*, Xiaogang YANG, Xiaofeng LI   

  1. Missile Engineering Institute, Rocket Force University of Engineering, Xi'an 710025, China
  • Received:2021-03-19 Online:2022-05-01 Published:2022-05-16
  • Contact: Hai XIA

摘要:

针对异源遥感图像的匹配难题, 提出一种基于风格迁移不变特征的合成孔径雷达(synthetic aperture radar, SAR)图像与光学图像配准算法。首先, 训练SAR图像转换为光学图像的风格迁移网络。然后, 基于风格迁移网络生成人工光学图像及其与原SAR图像之间的差异图, 并利用小波多尺度特性增强人工光学图像和差异图的边缘区域, 二值分割后提取人工光学图像的边缘不变特征。同时, 提取光学基准图像的边缘特征。最后, 通过互相关性准则进行边缘特征匹配, 进而实现原始SAR图像与光学基准图像的精确配准。实验结果表明, 较同类算法, 即使在训练样本不足的条件下, 生成的人工光学图像也能与光学基准图像实现精确配准, 增强了算法的适应性。

关键词: 异源图像匹配, 图像风格迁移, 差异图, 边缘不变特征

Abstract:

According to the matching difficulties of multi-sensor remote sensing images, a new synthetic aperture radar (SAR) and optical image registration approach based on image style transfer invariable features is proposed. First, the style transfer neural network for SAR image conversion to optical image is trained. Then, the artificial optical image and the difference map between the artificial optical image and the original SAR image are generated based on the style transfer neural network, and the edge regions of the artificial optical image and the difference image are enhanced by using the multi-scale characteristics of wavelet. After binary segmentation, the stable edge features of the artificial optical image. And the edge features of the optical reference image are also extracted. Finally, the edge features are matched by the cross-correlation criterion to achieve the accurate registration between the original SAR image and the optical reference image. The experiments demonstrate that the artificial optical image can be accurately registered with the optical reference image even under the condition of insufficient training samples. This enhances the adaptability of the algorithm.

Key words: multi-sensor images matching, image style transfer, difference image, stable edge features

中图分类号: