系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (5): 1502-1511.doi: 10.12305/j.issn.1001-506X.2022.05.10
纪朋徽, 代大海*, 邢世其, 冯德军
收稿日期:
2021-03-25
出版日期:
2022-05-01
发布日期:
2022-05-16
通讯作者:
代大海
作者简介:
纪朋徽(1995—), 男, 博士研究生, 主要研究方向为合成孔径雷达信号处理及对抗|代大海(1980—), 男, 研究员, 博士, 主要研究方向为极化雷达成像、雷达信号处理与目标识别以及合成孔径雷达对抗|邢世其(1984—)男, 副研究员, 博士, 主要研究方向为极化雷达成像、雷达信号处理以及合成孔径雷达对抗|冯德军(1972—), 男, 研究员, 博士, 主要研究方向为雷达目标识别、雷达电子战建模评估与仿真
基金资助:
Penghui JI, Dahai DAI*, Shiqi XING, Dejun FENG
Received:
2021-03-25
Online:
2022-05-01
Published:
2022-05-16
Contact:
Dahai DAI
摘要:
传统的合成孔径雷达地面运动目标指示(synthetic aperture radar ground moving target indication, SAR-GMTI)欺骗干扰技术, 使用两台协同干扰机, 能够生成逼真的虚假运动目标, 但当生成密集虚假运动目标时, 干扰机所需计算量太大, 无法满足电子战中实时生成干扰信号的要求。因此, 本文提出了一种密集虚假运动目标快速生成算法。该算法通过对双干扰机生成的虚假静止目标干扰信号进行复系数调制以控制虚假目标相位, 使其能够被双通道SAR-GMTI系统检测为运动目标; 然后结合SAR大场景欺骗干扰生成技术来生成密集虚假运动目标以降低运算量, 使其具备一定的工程可实现性。仿真实验验证了文中所提方法的有效性。
中图分类号:
纪朋徽, 代大海, 邢世其, 冯德军. 密集虚假运动目标生成方法[J]. 系统工程与电子技术, 2022, 44(5): 1502-1511.
Penghui JI, Dahai DAI, Shiqi XING, Dejun FENG. Dense false moving targets generation method[J]. Systems Engineering and Electronics, 2022, 44(5): 1502-1511.
表3
不同干扰方法下虚假目标的径向速度估计和方位位置估计"
干扰方法 | 目标 | 径向速度 | 方位位置 | |||||
估计 | 误差/(m/s) | 估计 | 位置偏移(-R0 | 重定位/m | 误差/m | |||
单干扰机 | p1 | -0.024 9 | -0.024 9 | 60 | 1 | 59 | -1 | |
p2 | -1.525 | -1.525 0 | 60 | 61 | -1 | -61 | ||
p3 | 0.574 8 | -0.025 2 | -44 | -23 | -21 | -1 | ||
p4 | 1.075 | 0.475 | -44.1 | -43 | 1.1 | 21.1 | ||
双干扰机 | p1 | -0.024 9 | -0.024 9 | 60 | 1 | 59 | -1 | |
p2 | 0.013 2 | 0.013 2 | 60.3 | -0.5 | 60.8 | 0.8 | ||
p3 | 0.574 8 | -0.025 2 | -44 | -23 | -21 | -1 | ||
p4 | 0.623 6 | 0.023 6 | -44.3 | -25 | -19.3 | 0.7 |
表5
虚假运动目标的径向速度和方位位置估计"
虚假目标 | 径向速度 | 方位位置 | |||||
估计 | 误差/(m/s) | 估计 | 位置偏移(-R0 | 重定位/m | 误差/m | ||
p1 | -0.626 7 | -0.073 3 | 47.7 | 25.1 | 22.6 | 2.6 | |
p2 | 0.416 1 | 0.016 1 | 33.7 | -16.6 | 50.3 | 0.3 | |
p3 | -0.580 9 | 0.019 1 | 63.7 | 23.2 | 40.5 | 0.5 | |
p4 | -0.828 0 | -0.028 0 | 41.9 | 33.1 | 8.8 | -1.2 | |
p5 | 0.563 5 | -0.036 5 | -33.5 | -21.5 | -12 | -2 | |
p6 | 0.494 2 | 0.005 8 | -59.8 | -19.8 | 40 | 0 | |
p7 | -0.477 9 | -0.022 1 | -30.1 | 19.1 | -49.2 | -0.8 | |
p8 | 0.680 2 | 0.019 8 | -48.0 | -27.2 | -20.8 | -0.8 |
1 | CUMMING I G , WONG F H . Digital processing of synthetic aperture radar data[M]. Norwood: Artech House Publishers, 2005. |
2 | BREIT H , FRITZ T , BALSS U , et al. TerraSAR-X SAR processing and products[J]. IEEE Trans.on Geoscience and Remote Sensing, 2009, 48 (2): 727- 740. |
3 |
SUN H , SHIMADA M , XU F . Recent advances in synthetic aperture radar remote sensing systems, data processing, and applications[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (11): 2013- 2016.
doi: 10.1109/LGRS.2017.2747602 |
4 | LV G H , LI Y , WANG G , et al. Ground moving target indication in SAR images with symmetric Doppler views[J]. IEEE Trans.on Geoscience and Remote Sensing, 2015, 54 (1): 533- 543. |
5 | CERUTTI-MAORI D , SIKANETA I . A generalization of DPCA processing for multichannel SAR/GMTI radars[J]. IEEE Trans.on Geoscience and Remote Sensing, 2012, 51 (1): 560- 572. |
6 | ROMEISER R , SUCHANDT S , RUNGE H , et al. First analysis of TerraSAR-X along-track InSAR-derived current fields[J]. IEEE Trans.on Geoscience and Remote Sensing, 2009, 48 (2): 820- 829. |
7 | OVERMAN K C, LEAHY K A, LAWRENCE T W, et al. The future of surface surveillance-revolutionizing the view of the battlefield[C]//Proc. of the IEEE Record of the International Radar Conference, 2000: 1-6. |
8 |
CERUTTI-MAORI D , SIKANETA I , GIERULL C H . Optimum SAR/GMTI processing and its application to the radar satellite RADARSAT-2 for traffic monitoring[J]. IEEE Trans.on Geoscience and Remote Sensing, 2012, 50 (10): 3868- 3881.
doi: 10.1109/TGRS.2012.2186637 |
9 | CHANG X , DONG C X , TANG Z Z , et al. Mosaic scene deception jamming based on 2D separation modulation against SAR[J]. IET Radar, Sonar & Navigation, 2018, 13 (2): 310- 315. |
10 |
ZHOU F , TIAN T , ZHAO B , et al. Deception against near-field synthetic aperture radar using networked jammers[J]. IEEE Trans.on Aerospace and Electronic Systems, 2019, 55 (6): 3365- 3377.
doi: 10.1109/TAES.2019.2906414 |
11 | YANG K Z , YE W , MA F F , et al. A large-scene deceptive jamming method for space-borne SAR based on time-delay and frequency-shift with template segmentation[J]. Remote Sensing, 2020, 12 (1): 53. |
12 | SUN Q Y , SHU T , TANG B , et al. Target deception jamming method against spaceborne synthetic aperture radar using electromagnetic scattering[J]. Journal of Applied Remote Sensing, 2018, 12 (1): 016033. |
13 | 李永祯, 黄大通, 邢世其, 等. 合成孔径雷达干扰技术研究综述[J]. 雷达学报, 2020, 9 (5): 753- 764. |
LI Y Z , HUANG D T , XING S Q , et al. A review of synthetic aperture radar jamming technique[J]. Journal of Radars, 2020, 9 (5): 753- 764. | |
14 | GOJ W W . Synthetic-aperture radar and electronic warfare[M]. Norwood: Artech House Publishers, 1993. |
15 |
SPEZIO A E . Electronic warfare systems[J]. IEEE Trans.on Microwave Theory and Techniques, 2002, 50 (3): 633- 644.
doi: 10.1109/22.989948 |
16 | 黄大通, 邢世其, 刘业民, 等. 基于噪声卷积调制的SAR虚假信号生成新方法[J]. 雷达学报, 2020, 9 (5): 898- 907. |
HUANG D T , XING S Q , LIU Y M , et al. Fake SAR signal generation method based on noise convolution modulation[J]. Journal of Radars, 2020, 9 (5): 898- 907. | |
17 | SUN Q Y , SHU T , TANG M , et al. Effective moving target deception jamming against multichannel SAR-GMTI based on multiple jammers[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17 (3): 441- 445. |
18 |
CHANG X , DONG C X . A barrage noise jamming method based on double jammers against three channel SAR GMTI[J]. IEEE Access, 2019, 7, 18755- 18763.
doi: 10.1109/ACCESS.2019.2897043 |
19 | 黄大通, 邢世其, 庞礴, 等. 对SAR-GMTI的二维单音调制散射波干扰[J]. 系统工程与电子技术, 2020, 42 (8): 1685- 1694. |
HUANG D T , XING S Q , PANG B , et al. Scattering-wave jamming against multi-channel SAR-GMTI based on two dimensional single tune modulation[J]. Systems Engineering and Electronics, 2020, 42 (8): 1685- 1694. | |
20 | LI W, LIANG D N, DONG Z. A new jamming method on parasitic spaceborne SAR system[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2005: 4611-4614. |
21 |
吴晓芳, 梁景修, 王雪松, 等. SAR-GMTI匀加速运动假目标有源调制干扰方法[J]. 宇航学报, 2012, 33 (6): 761- 768.
doi: 10.3873/j.issn.1000-1328.2012.06.011 |
WU X F , LIANG J X , WANG X S , et al. Modulation jamming method of active false uniformly-accelerating targets against SAR-GMTI[J]. Journal of Astronautics, 2012, 33 (6): 761- 768.
doi: 10.3873/j.issn.1000-1328.2012.06.011 |
|
22 |
吴晓芳, 王雪松, 梁景修. SARGMTI高逼真匀速运动假目标调制干扰方法[J]. 宇航学报, 2012, 33 (10): 1472- 1479.
doi: 10.3873/j.issn.1000-1328.2012.10.016 |
WU X F , WANG X S , LIANG J X . Modulation jamming method for high-vivid false uniformly-moving targets against SAR-GMTI[J]. Journal of Astronautics, 2012, 33 (10): 1472- 1479.
doi: 10.3873/j.issn.1000-1328.2012.10.016 |
|
23 |
DONG C X , CHANG X . A novel scattered wave deception jamming against three channel SAR GMTI[J]. IEEE Access, 2018, 6, 53882- 53889.
doi: 10.1109/ACCESS.2018.2871518 |
24 | ZHANG J K , QI Z F , ZENG Y H , et al. Deceptive jamming against multi-channel SAR-GMTI[J]. The Journal of Engineering, 2019, 2019 (10): 7105- 7109. |
25 |
SUN Q Y , SHU T , YU K B , et al. A novel deceptive jamming method against two-channel SAR-GMTI based on two jammers[J]. IEEE Sensors Journal, 2019, 19 (14): 5600- 5610.
doi: 10.1109/JSEN.2019.2908030 |
26 | ZHANG J K, DAI D, QI Z, et al. Analysis of deceptive moving target generated by single jammer in multi-channel SAR-GMTI[C]//Proc. of the International Applied Computational Electromagnetics Society Symposium, 2017: 1-2. |
27 |
SUN Q Y , SHU T , YU K B , et al. Efficient deceptive jamming method of static and moving targets against SAR[J]. IEEE Sensors Journal, 2018, 18 (9): 3610- 3618.
doi: 10.1109/JSEN.2018.2813521 |
28 | XU S K, LIU J H, LI Y N, et al. A new deceptive jamming method for SAR based on false moving targets[C]//Proc. of the International Conference on Radar, 2008: 371-374. |
29 |
ZHOU F , ZHAO B , TAO M L , et al. A large scene deceptive jamming method for space-borne SAR[J]. IEEE Trans.on Geoscience and Remote Sensing, 2013, 51 (8): 4486- 4495.
doi: 10.1109/TGRS.2013.2259178 |
30 | LIU Y C , WANG W , PAN X T , et al. A frequency-domain three-stage algorithm for active deception jamming against synthetic aperture radar[J]. IET Radar, Sonar & Navigation, 2014, 8 (6): 639- 646. |
[1] | 苗添, 曾虹程, 王贺, 陈杰. 基于迭代阈值分割的星载SAR洪水区域快速提取[J]. 系统工程与电子技术, 2022, 44(9): 2760-2768. |
[2] | 周红平, 马明辉, 吴若无, 许雄, 郭忠义. 基于稀疏表示分类的雷达欺骗干扰识别方法[J]. 系统工程与电子技术, 2022, 44(9): 2791-2799. |
[3] | 王彩云, 吴钇达, 王佳宁, 马璐, 赵焕玥. 基于改进的CNN和数据增强的SAR目标识别[J]. 系统工程与电子技术, 2022, 44(8): 2483-2487. |
[4] | 傅东宁, 廖桂生, 黄岩, 张邦杰, 王幸. 基于图拉普拉斯嵌入的合成孔径雷达时变窄带干扰抑制算法[J]. 系统工程与电子技术, 2022, 44(6): 1846-1853. |
[5] | 盖明慧, 张苏, 孙卫天, 倪育德, 杨磊. 复数兼容全变分SAR目标结构特征增强[J]. 系统工程与电子技术, 2022, 44(6): 1862-1872. |
[6] | 徐安林, 张毓, 周峰. 基于Beta过程的高分辨ISAR成像[J]. 系统工程与电子技术, 2022, 44(6): 1873-1879. |
[7] | 陈嘉贝, 王青平, 叶源, 吴微微, 袁乃昌. 基于NSGA-Ⅱ的波前相位畸变特性分析[J]. 系统工程与电子技术, 2022, 44(5): 1439-1446. |
[8] | 刘丰恺, 黄大荣, 郭新荣, 冯存前. 基于吕氏分布的机动目标参数化平动补偿方法[J]. 系统工程与电子技术, 2022, 44(4): 1166-1173. |
[9] | 陈冬, 句彦伟. 基于语义分割实现的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2022, 44(4): 1195-1201. |
[10] | 周晓玲, 张朝霞, 鲁雅, 王倩, 王琨琨. 基于改进R-FCN的SAR图像识别[J]. 系统工程与电子技术, 2022, 44(4): 1202-1209. |
[11] | 杨磊, 张苏, 盖明慧, 方澄. 高分辨SAR目标成像方向性结构特征增强[J]. 系统工程与电子技术, 2022, 44(3): 808-818. |
[12] | 王俊杰, 冯德军, 胡卫东. 基于时变材料的合成孔径雷达图像二维调制方法[J]. 系统工程与电子技术, 2022, 44(2): 455-462. |
[13] | 方澄, 李慧娟, 路稳, 宋玉蒙, 杨磊. 基于形态学自适应分块的高分辨SAR多特征增强算法[J]. 系统工程与电子技术, 2022, 44(2): 470-479. |
[14] | 雷禹, 冷祥光, 周晓艳, 孙忠镇, 计科峰. 基于改进ResNet网络的复数SAR图像舰船目标识别方法[J]. 系统工程与电子技术, 2022, 44(12): 3652-3660. |
[15] | 贾晓雅, 汪洪桥, 杨亚聃, 崔忠马, 熊斌. 基于YOLO框架的无锚框SAR图像舰船目标检测[J]. 系统工程与电子技术, 2022, 44(12): 3703-3709. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||