系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (4): 1336-1342.doi: 10.12305/j.issn.1001-506X.2022.04.32
赵宏泽, 魏光辉*, 杜雪, 郑建拥, 李媚
收稿日期:
2021-03-31
出版日期:
2022-04-01
发布日期:
2022-04-01
通讯作者:
魏光辉
作者简介:
赵宏泽(1998—), 男, 博士研究生, 主要研究方向为电磁环境效应试验评估技术|魏光辉(1964—), 男, 教授, 硕士, 主要研究方向为静电与电磁防护技术、电磁环境效应试验评估技术|杜雪(1991—), 女, 博士研究生, 主要研究方向为电磁环境效应试验评估技术|郑建拥(1994—), 男, 博士研究生, 主要研究方向为电磁环境效应试验评估技术|李媚(1980—), 女, 副教授, 博士研究生, 主要研究方向为电磁环境效应试验评估技术
基金资助:
Hongze ZHAO, Guanghui WEI*, Xue DU, Jianyong ZHENG, Mei LI
Received:
2021-03-31
Online:
2022-04-01
Published:
2022-04-01
Contact:
Guanghui WEI
摘要:
为掌握卫星导航接收机电磁辐射效应规律, 以某型导航接收机为试验对象, 采用全电平辐照法对其进行单频连续波和带外双频电磁辐射三阶互调阻塞效应试验, 通过试验验证了三阶互调阻塞效应模型的准确性。结果表明, 受试导航接收机对工作频率频偏-4~18 MHz范围内的单频电磁辐射较为敏感, 抗负频偏电磁干扰的能力远大于抗正频偏电磁干扰的能力; 带外双频三阶互调敏感场强显著低于相同频点的单频阻塞干扰场强, 最大差值可达46 dB; 负频偏端三阶互调阻塞干扰因子峰值与正频偏端峰值之比高达20余倍, 敏感频偏范围宽1倍以上。
中图分类号:
赵宏泽, 魏光辉, 杜雪, 郑建拥, 李媚. 卫星导航接收机三阶互调阻塞效应分析[J]. 系统工程与电子技术, 2022, 44(4): 1336-1342.
Hongze ZHAO, Guanghui WEI, Xue DU, Jianyong ZHENG, Mei LI. Analysis of third-order intermodulation blocking effect for satellite navigation receiver[J]. Systems Engineering and Electronics, 2022, 44(4): 1336-1342.
表3
正频偏端三阶互调阻塞干扰试验结果"
E00/Ef0/dB | 分组 Δfi/MHz | Ei/Ei0/dB | ||
1 | 2 | 3 | ||
0 | Δf3=36 | -1.0 | -2.0 | -3.0 |
Δf4=72 | -25.5 | -23.5 | -22.5 | |
0 | Δf3=54 | -1.5 | -2.5 | -3.5 |
Δf4=108 | -22.5 | -20.5 | -19.5 | |
-6.5 | Δf3=27 | -6.5 | -3.0 | -1.5 |
Δf4=18 | -1.0 | -2.0 | -3.0 | |
-8.5 | Δf3=27 | -3.0 | -4.5 | -5.5 |
Δf4=45 | -5.0 | -1.0 | -0.5 | |
-10.5 | Δf3=27 | -2.5 | -1.5 | -3.5 |
Δf4=51 | -4.5 | -5.5 | -2.0 | |
-9.0 | Δf3=36 | -1.0 | -2.0 | -3.0 |
Δf4=60 | -32.5 | -31.5 | -27.5 | |
-9.0 | Δf3=36 | -8.0 | -10.0 | -9.0 |
Δf4=66 | -12.5 | -10.5 | -11.5 | |
-10.0 | Δf3=45 | -5.0 | -7.0 | -6.0 |
Δf4=81 | -6.5 | -4.5 | -5.5 | |
-9.0 | Δf3=54 | -2.5 | -3.5 | -4.5 |
Δf4=93 | -16.0 | -14.0 | -12.0 | |
-11.0 | Δf3=36 | -10.0 | -11.0 | -12.0 |
Δf4=57 | -5.0 | -4.0 | -2.5 | |
-10.0 | Δf3=36 | -3.0 | -6.0 | -8.0 |
Δf4=69 | -16.5 | -11.5 | -9.5 |
表7
负频偏端三阶互调阻塞干扰试验结果"
E00/Ef0/dB | 分组 Δfi/MHz | Ei/Ei0/dB | ||
1 | 2 | 3 | ||
0 | Δf3=-12 | -20.0 | -14.0 | -22.0 |
Δf4=-24 | -39.0 | -49.0 | -33.0 | |
0 | Δf3=-18 | -17.0 | -20.0 | -15.0 |
Δf4=-36 | -50.0 | -45.0 | -55.0 | |
0 | Δf3=-24 | -29.0 | -33.0 | -35.0 |
Δf4=-48 | -44.0 | -36.0 | -33.0 | |
0 | Δf3=-36 | -45.0 | -49.0 | -41.0 |
Δf4=-72 | -35.0 | -27.0 | -41.0 | |
0 | Δf3=-48 | -40.0 | -44.0 | -48.0 |
Δf4=-96 | -39.0 | -32.0 | -25.0 | |
-30 | Δf3=-18 | -8.0 | -9.0 | -11.0 |
Δf4=-30 | -41.0 | -40.0 | -38.0 | |
0 | Δf3=-30 | -47.0 | -50.0 | -44.0 |
Δf4=-60 | -46.0 | -42.0 | -53.0 | |
-10 | Δf3=-36 | -40.0 | -44.0 | -38.0 |
Δf4=-84 | -34.0 | -26.0 | -36.0 | |
-30 | Δf3=-30 | -37.0 | -40.0 | -34.0 |
Δf4=-54 | -37.0 | -31.0 | -42.0 | |
-28 | Δf3=-54 | -25.0 | -23.0 | -27.0 |
Δf4=-102 | -25.0 | -33.0 | -23.0 |
表8
其他负频偏端三阶互调阻塞干扰因子计算结果"
阻塞因子 | 频偏Δfi/MHz | |||||
-24 | -30 | -36 | -48 | -54 | ||
平均值 | 29.68 | 173.18 | 113.63 | 148.42 | 360.16 | |
最大值 | 34.59 | 209.89 | 118.03 | 160.32 | 374.11 | |
最小值 | 27.48 | 148.59 | 105.20 | 142.89 | 333.43 | |
阻塞因子 | 频偏Δfi/MHz | |||||
-60 | -72 | -84 | -96 | -102 | ||
平均值 | 374.11 | 127.50 | 113.63 | 45.39 | 1.37 | |
最大值 | 419.76 | 137.72 | 122.74 | 50.93 | 1.73 | |
最小值 | 333.43 | 109.40 | 97.50 | 40.46 | 1.09 |
表9
三阶互调阻塞效应指数计算结果"
E00/Ef0/dB | 分组 Δfi/MHz | Ei/Ei0/dB | ||
1 | 2 | 3 | ||
-16.5 | Δf2=36 | -1.0 | -0.5 | -1.5 |
Δf1=27 | -1.0 | -1.5 | -0.5 | |
R | 0.93 | 0.87 | 0.98 | |
-9.0 | Δf2=60 | -28.5 | -23.5 | -26.5 |
Δf1=36 | -3.0 | -6.0 | -4.0 | |
R | 1.00 | 0.89 | 1.00 | |
-7.0 | Δf2=66 | -15.0 | -10.0 | -8.0 |
Δf1=36 | -7.0 | -10.0 | -12.0 | |
R | 1.34 | 1.19 | 0.95 | |
-27.0 | Δf2=-30 | -37.0 | -38.0 | -39.0 |
Δf1=-18 | -13.0 | -12.0 | -11.0 | |
R | 1.12 | 1.25 | 1.40 | |
0 | Δf2=-60 | -56.0 | -49.0 | -44.0 |
Δf1=-30 | -42.0 | -45.0 | -48.0 | |
R | 1.17 | 1.31 | 1.17 | |
0 | Δf2=-72 | -40.0 | -36.0 | -30.0 |
Δf1=-36 | -39.0 | -42.0 | -45.0 | |
R | 1.28 | 1.28 | 1.28 |
1 | 蒋治宇, 郭承军. 卫星导航与5G技术应用的研究[C]//第九届中国卫星导航学术年会, 2018: 15-19. |
JIANG Z Y, GUO C J. Research on the application of satellite navigation and 5G technology[C]//Proc. of the 9th China Satellite Navigation Academic Annual Conference, 2018: 15-19. | |
2 | ELLIOTT D , CHRISTOPHER J . Understanding GPS: principles and applications[M]. London: Artech House Incorporation, 2006: 194- 198. |
3 | 范宇清, 程二威, 魏明, 等. 卫星导航接收机电磁环境效应研究综述[J]. 飞航导弹, 2019, 49 (12): 49- 54. |
FAN Y Q , CHENG E W , WEI M , et al. Summary of electromagnetic environmental effects of satellite navigation receivers[J]. Aerodynamic Missile Journal, 2019, 49 (12): 49- 54. | |
4 |
BEK M K , SHAHEEN E M , ELGAMEL S A . Classification and mathematical expression of different interference signals on a GPS receiver[J]. Journal of the Institute of Navigation, 2015, 62 (1): 23- 37.
doi: 10.1002/navi.77 |
5 |
JANG J , PAONNI M , EISSFELLER B . CW interference effects on tracking performance of GNSS receivers[J]. IEEE Trans.on Aerospace and Electronic Systems, 2012, 48 (1): 243- 258.
doi: 10.1109/TAES.2012.6129633 |
6 |
QU B , WEI J L , TANG Z P , et al. Analysis of combined effects of multipath and CW interference on coherent delay lock loop[J]. Wireless Personal Communications, 2014, 77 (3): 2213- 2233.
doi: 10.1007/s11277-014-1634-1 |
7 |
YANG Y H , BA X H , CHEN J . A novel VLSI architecture for multi-constellation and multi-frequency GNSS acquisition engine[J]. IEEE Access, 2019, 7, 655- 665.
doi: 10.1109/ACCESS.2018.2885592 |
8 |
AGHADADASHFAM M , MOSAVI M R , REZAEI M J . A new post-correlation anti-jamming technique for GPS receivers[J]. GPS Solutions, 2020, 24 (4): 89- 105.
doi: 10.1007/s10291-020-01004-y |
9 |
JIANG Y L , ZHA H , SHI J R , et al. A compact x-band microwave pulse compressor using a corrugated cylindrical cavity[J]. IEEE Trans.on Microwave Theory and Techniques, 2021, 69 (3): 1586- 1593.
doi: 10.1109/TMTT.2021.3053913 |
10 |
SEIFI Z , GHORBANI A , ABDIPOUR A . Analysis and experi-mental study of radiative microwave pulses effects on the nonlinear performance of a low-noise amplifier[J]. IEEE Trans.on Plasma Science, 2021, 49 (3): 1105- 1114.
doi: 10.1109/TPS.2021.3057613 |
11 |
ZHANG D X , ZHOU X , CHENG E W , et al. Investigation on effects of HPM pulse on UAV's datalink[J]. IEEE Trans.on Electromagnetic Compatibility, 2020, 62 (3): 829- 839.
doi: 10.1109/TEMC.2019.2915285 |
12 |
ZHANG D X , CHENG E W , WAN H J , et al. Prediction of electromagnetic compatibility for dynamic datalink of UAV[J]. IEEE Trans.on Electromagnetic Compatibility, 2019, 61 (5): 1474- 1482.
doi: 10.1109/TEMC.2018.2867641 |
13 |
LI W , WEI G H , PAN X D , et al. Electromagnetic compatibi-lity prediction method under the multifrequency in-band interference environment[J]. IEEE Trans.on Electromagnetic Compatibility, 2018, 60 (2): 520- 528.
doi: 10.1109/TEMC.2017.2720961 |
14 |
HU D Z , WEI G H , PAN X D , et al. Investigation of the radia-tion immunity testing method in reverberation chambers[J]. IEEE Trans.on Electromagnetic Compatibility, 2017, 59 (6): 1791- 1797.
doi: 10.1109/TEMC.2017.2698141 |
15 |
张庆龙, 程二威, 王玉明, 等. 无人机卫星导航系统的电磁干扰效应规律研究[J]. 系统工程与电子技术, 2020, 42 (12): 2684- 2691.
doi: 10.3969/j.issn.1001-506X.2020.12.03 |
ZHANG Q L , CHENG E W , WANG Y M , et al. Research on the electromagnetic interference effect of UAV satellite navigation system[J]. Systems Engineering and Electronics, 2020, 42 (12): 2684- 2691.
doi: 10.3969/j.issn.1001-506X.2020.12.03 |
|
16 | BAEK J , YOO S , KIM S . Jamming effect analysis of two Chinese GNSS Beidou-Ⅱ civil signals[J]. International Journal of Electrical and Computer Engineering, 2012, 2 (6): 840- 845. |
17 | MANSSON D, THOTTAPPILLIL R, NILSSON T. Susceptibility of civilian GPS receivers to electromagnetic radiation[C]//Proc. of the IEEE International Symposium on Electromagnetic Compatibility, 2008: 434-437. |
18 | BALAEI A T , DEMPSTER A G , PRESTI L L . Characterization of the effects of CW and pulse CW interference on the GPS signal quality[J]. IEEE Trans.on Aerospace & Electronic Systems, 2009, 45 (4): 1418- 1431. |
19 | BETZ J W , KOLODZIEJSKI K R . Generalized theory of code tracking with an early-late discriminator Part I: lower bound and coherent processing[J]. IEEE Trans.on Aerospace & Electronic Systems, 2009, 45 (4): 1538- 1556. |
20 | KARAIM M, ELGHAMRAWY H, TAMAZIN M, et al. Investigation of the effects of white Gaussian noise jamming on commercial GNSS receivers[C]//Proc. of the International Conference on Computer Engineering & Systems, 2017: 468-472. |
21 |
HEGARTY C J , BOBYN D , GRABOWSKI J , et al. An overview of the effects of out-of-band interference on GNSS recei-vers[J]. Journal of the Institute of Navigation, 2020, 67 (1): 143- 161.
doi: 10.1002/navi.345 |
22 | NOVAK A , SEDLACKOVA A N , STELMACH A , et al. Safety implications of GNSS signal interference at Zilina Air-port[J]. Operation and Economics in Transport, 2020, 22 (3): 40- 48. |
23 |
BARRAK R , OTHMAN A , ABIB G I , et al. Design of a tunable anti-aliasing filter for multistandard RF subsampling GNSS receivers[J]. IEEE Trans.on Circuits and Systems Ⅱ: Express Briefs, 2019, 66 (2): 207- 211.
doi: 10.1109/TCSII.2018.2848976 |
24 | ARMSTRONG K. EMC for the functional safety of automobiles why EMC testing is insufficient, and what is necessary[C]//Proc. of the IEEE International Symposium on Electromagnetic Compatibility, 2008. |
25 | DUFFY A, ORLANDI A, NISANGHI H, et al. Signal integrity testing using multiple out-of-band sources in a reverberation chamber[C]//Proc. of the IEEE International Symposium on Electromagnetic Compatibility, 2008. |
26 |
DUFFY A , ORLANDI A , ARMSTRONG K . Preliminary study of a reverberation chamber method for multiple-source testing using intermodulation[J]. IET Science, Measurement and Technology, 2010, 4 (1): 21- 27.
doi: 10.1049/iet-smt.2009.0008 |
27 | MARDIGUIAN M. Combined effects of several, simultaneous, EMI couplings[C]//Proc. of the IEEE International Symposium on Electromagnetic Compatibility, 2000: 181-184. |
28 | CHANG W T, KUEI J T, LAI S H. Electromagnetic intermodulation interference using quartz oscillators[C]//Proc. of the IEEE International Frequency Control Symposium, 2014. |
29 | GJB 8848—2016. 系统电磁环境效应试验方法[S]. 北京: 国家军用标准出版发行部, 2016. |
GJB 8848—2016. Electromagnetic environmental effects test methods for systems[S]. Beijing: Military Standard Press, 2016. | |
30 | 魏光辉, 潘晓东, 万浩江. 装备电磁辐射效应规律与作用机理[M]. 北京: 国防工业出版社, 2018. |
WEI G H , PAN X D , WAN H J . Feature and mechanism of electromagnetic radiation effects for equipment[M]. Beijing: National Defense Industry Press, 2018. | |
31 | 魏光辉, 杜雪, 王雅平. 用频设备带外多频电磁辐射三阶互调阻塞效应测试与建模评估方法[J]. 电子学报, 2021, 49 (6): 1094- 1100. |
WEI G H , DU X , WANG Y P . Testing and modeling evaluation method of third-order intermodulation blocking effect by outband multifrequency electromagnetic radiation for spectrum-dependent equipment[J]. Acta Electronica Sinica, 2021, 49 (6): 1094- 1100. |
[1] | 李媚, 魏光辉, 赵宏泽, 郑建拥, 杜雪. 导航接收机噪声电磁辐射阻塞效应分析[J]. 系统工程与电子技术, 2022, 44(10): 3221-3227. |
[2] | 赵凯, 魏光辉, 潘晓东, 杜雪, 任仕召. 单频电磁辐射对雷达的干扰规律[J]. 系统工程与电子技术, 2021, 43(2): 363-368. |
[3] | 孙江宁, 潘晓东, 卢新福, 万浩江. 双线系统双探头大电流注入等效强场电磁辐射试验方法[J]. 系统工程与电子技术, 2021, 43(11): 3064-3071. |
[4] | 杜雪, 魏光辉, 任仕召, 赵凯. 扫频雷达单频连续波电磁辐射阻塞效应分析[J]. 系统工程与电子技术, 2020, 42(12): 2742-2746. |
[5] | 张悦, 刘尚合, 刘卫东, 胡小锋. 基于加窗四阶累量时延估计的微瞬态电磁辐射信号检测算法[J]. 系统工程与电子技术, 2016, 38(3): 512-518. |
[6] | 李伟, 魏光辉, 潘晓东, 卢新福, 万浩江, 李卉. 典型通信装备带内双频连续波电磁辐射效应预测方法[J]. 系统工程与电子技术, 2016, 38(11): 2474-2480. |
[7] | 胡彦逢, 曹可劲, 边少锋, 李豹, 叶鑫. 基于时钟频漂检验的卫星导航欺骗识别算法[J]. 系统工程与电子技术, 2015, 37(7): 1629-1632. |
[8] | 伍微, 倪少杰, 王飞雪. 基于FIFO循环缓冲区的DSP外围设备实时调度研究[J]. Journal of Systems Engineering and Electronics, 2009, 31(5): 1209-1212. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||