1 |
姜尚, 田福庆, 孙世岩, 等. 适应海上火力支援新需求的末端导引控制方法综述[J]. 飞航导弹, 2019, (6): 75- 82.
|
|
JIANG S , TIAN F Q , SUN S Y , et al. Summary of terminal guidance and control method to meet the new requirements of marine fire support[J]. Aerodynamic Missile Journal, 2019, (6): 75- 82.
|
2 |
CHANG S J . Dynamic response to canard control and gravity for a dual-spin projectile[J]. Journal of Spacecraft and Rockets, 2016, 53 (3): 558- 566.
doi: 10.2514/1.A33485
|
3 |
JIANG S , TIAN F Q , SUN S Y , et al. Integrated guidance and control of guided projectile with multiple constraints based on fuzzy adaptive and dynamic surface[J]. Defense Technology, 2020, 16 (6): 1130- 1141.
doi: 10.1016/j.dt.2019.12.003
|
4 |
GUO J G , XIONG Y , ZHOU J . A new sliding mode control design for integrated missile guidance and control system[J]. Aero-space Science and Technology, 2018, 78, 54- 77.
doi: 10.1016/j.ast.2018.03.042
|
5 |
HE S M , WANG W , WANG J . Adaptive backstepping impact angle control with autopilot dynamics and acceleration saturation consideration[J]. International Journal of Robust and Nonlinear Control, 2017, 27, 3777- 3794.
|
6 |
MENG K Z , ZHOU D . Super-twisting integral-sliding-mode guidance law considering autopilot dynamics[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aero-space Engineering, 2018, 232 (9): 1787- 1799.
doi: 10.1177/0954410017703413
|
7 |
SEO M , LEE C , TAHK M . New design methodology for impact angle control guidance for various missile and target motions[J]. IEEE Trans.on Control Systems and Technology, 2018, 26 (6): 2190- 2197.
doi: 10.1109/TCST.2017.2749560
|
8 |
WILLIAMS D E, RICHMAN J, FRIEDLAND B. Design of an integrated strapdown guidance and control system for a tactical missile[C]//Proc. of the AIAA Guidance and Control Conference, 1983: AIAA 1983-2169.
|
9 |
JEGARKANDI M F , ASHRAFIFAR A , MOHSENIPOUR R . Adaptive integrated guidance and fault tolerant control using backstepping and sliding mode[J]. International Journal of Aero-space Engineering, 2015, 2015 (6): 1- 7.
|
10 |
VADDI S , MENON P K , OHLMEYER E J . Numerical state-dependent riccati equation approach for missile integrated guidance control[J]. Journal of Guidance, Control, and Dynamics, 2012, 32 (2): 699- 703.
|
11 |
XIN M , BALAKRISHNAN S N , OHLMEYER E J . Integrated guidance and control of missiles with θ D method[J]. IEEE Trans.on Control Systems Technology, 2006, 14 (6): 981- 992.
doi: 10.1109/TCST.2006.876903
|
12 |
SEYEDIPOUR S H , JEGARKANDI M F , SHAMAGHDARI S . Nonlinear integrated guidance and control based on adaptive backstepping scheme[J]. Aircraft Engineering and Aerospace Technology, 2017, 89 (3): 415- 424.
doi: 10.1108/AEAT-12-2014-0209
|
13 |
IBARRONDO F B , SANZ-ARANGUEZ P . Integrated versus two-loop guidance-autopilot for a dual control missile with high-order aerodynamic model[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016, 230 (1): 60- 76.
doi: 10.1177/0954410015586862
|
14 |
WANG Y L , TANG S J , SHANG W , et al. Adaptive fuzzy sliding mode guidance law considering available acceleration and autopilot dynamics[J]. International Journal of Aerospace Engineering, 2018, 2018, 6081801.
|
15 |
GUO J G , XIONG Y , ZHOU J . A new sliding mode control design for integrated missile guidance and control system[J]. Aerospace Science and Technology, 2018, 78, 54- 77.
doi: 10.1016/j.ast.2018.03.042
|
16 |
JIANG S , TIAN F Q , SUN S Y . Integrated guidance and control design of rolling guided projectile based on adaptive fuzzy control with multiple constraints[J]. Mathematical Problems in Engineering, 2019, 2019, 6309462.
|
17 |
KOREN A , IDAN M , GOLAN O M . Integrated sliding mode guidance and control for missile with on-off actuators[J]. Journal of Guidance, Control, and Dynamics, 2015, 31 (1): 204- 214.
|
18 |
SAGLIANO M , MOOIJ E , THEIL S . Adaptive disturbance-based high-order sliding-mode control for hypersonic-entry vehicles[J]. Journal of Guidance, Control, and Dynamics, 2017, 40 (3): 521- 536.
doi: 10.2514/1.G000675
|
19 |
WANG L , ZHANG W H , WANG D H , et al. Command filtered back-stepping missile integrated guidance and autopilot based on extended state observer[J]. Advances in Mechanical Engineering, 2017, 9 (11): 1- 13.
|
20 |
HAN J Q . From PID to active disturbance rejection control[J]. IEEE Trans.on Industrial Electronics, 2009, 56 (3): 900- 906.
doi: 10.1109/TIE.2008.2011621
|
21 |
WANG J H , CAI Y W , CHENG L , et al. Active disturbance rejection guidance and control scheme for homing missiles with impact angle constraints[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233 (3): 1133- 1146.
doi: 10.1177/0954410017748968
|
22 |
YANG S J , GUO J G , ZHOU J . New integrated guidance and control of homing missiles with an impact angle against a ground target[J]. International Journal of Aerospace Engineering, 2018, 2018, 3968242.
|
23 |
SUN L , YI W J , YUAN D D , et al. Application of elman neural network based on genetic algorithm in initial alignment of SINS for guided projectile[J]. Mathematical Problems in Engineering, 2019, 2019, 5810174.
|
24 |
HE S M , SONG T , LIN D F . Impact angle constrained integrated guidance and control for maneuvering target interception[J]. Journal of Guidance, Control, and Dynamics, 2017, 40 (10): 2652- 2660.
|
25 |
田福庆, 姜尚, 梁伟阁. 含齿隙弹载舵机的全局反步模糊自适应控制[J]. 自动化学报, 2019, 45 (6): 1177- 1185.
|
|
TIAN F Q , JIANG S , LIANG W G . Global backstepping fuzzy adaptive control for ammunition actuator with backlash[J]. Acta Automatica Sinica, 2019, 45 (6): 1177- 1185.
|
26 |
WU J , LI J , CHEN W S . Practical adaptive fuzzy tracking control for a class of perturbed nonlinear systems with backlash nonlinearity[J]. Information Sciences, 2017, 420, 517- 531.
doi: 10.1016/j.ins.2017.08.085
|
27 |
YIN Z , HE M , KAYNAK O , et al. Uncertainty and distur-bance estimator-based control of a flapping-wing aerial vehicle with unknown backlash-like hysteresis[J]. IEEE Trans.on Industrial Electronics, 2020, 67 (6): 4826- 4835.
doi: 10.1109/TIE.2019.2926055
|
28 |
LAI G Y , LIU Z , ZHANG Y , et al. Adaptive fuzzy tracking control of nonlinear systems with asymmetric actuator backlash based on a new smooth inverse[J]. IEEE Trans.on Cybernetics, 2016, 46 (6): 1250- 1262.
doi: 10.1109/TCYB.2015.2443877
|
29 |
TARBOURIECH S , QUEINNEC I , PRIEUR C . Stability analysis and stabilization of systems with input backlash[J]. IEEE Trans.on Automatic Control, 2014, 59 (2): 488- 494.
doi: 10.1109/TAC.2013.2273279
|
30 |
SHEN Q K , SHI Y , JIA R F , et al. Design on type-2 fuzzy-based distributed supervisory control with backlash-like hysteresis[J]. IEEE Trans.on Fuzzy Systems, 2019, 29 (2): 252- 261.
|
31 |
YU M , EVANGELOU S A , DINI D . Position control of parallel active link suspension with backlash[J]. IEEE Trans.on Industrial Electronics, 2019, 67 (6): 4741- 4751.
|