系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (4): 1291-1300.doi: 10.12305/j.issn.1001-506X.2022.04.27

• 制导、导航与控制 • 上一篇    下一篇

改进萤火虫算法及其收敛性分析

张大力1, 夏红伟1, 张朝兴2, 马广程1, 王常虹1,*   

  1. 1. 哈尔滨工业大学航天学院, 黑龙江 哈尔滨 150001
    2. 上海航天控制技术研究所, 上海 201109
  • 收稿日期:2021-12-07 出版日期:2022-04-01 发布日期:2022-04-01
  • 通讯作者: 王常虹
  • 作者简介:张大力(1991—), 男, 博士研究生, 主要研究方向为智能优化、轨迹规划、轨道动力学|夏红伟(1979—), 男, 教授, 博士, 主要研究方向为控制理论与控制方法、导航制导与控制、航天器地面仿真|张朝兴(1982—),男,高级工程师,硕士,主要研究方向为航天器仪器仪表、电信技术、航天器地面仿真|马广程(1972—), 男, 教授, 博士, 主要研究方向为航天器地面仿真、运动控制|王常虹(1961—), 男, 教授, 博士, 主要研究方向为控制理论与控制方法、导航制导与控制
  • 基金资助:
    国家自然科学基金(61304108);国家重点研发计划(2020YFC2200600)

Improved firefly algorithm and its convergence analysis

Dali ZHANG1, Hongwei XIA1, Chaoxing ZHANG2, Guangcheng MA1, Changhong WANG1,*   

  1. 1. School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
    2. Shanghai Aerospace Control Technology Institute, Shanghai 201109, China
  • Received:2021-12-07 Online:2022-04-01 Published:2022-04-01
  • Contact: Changhong WANG

摘要:

萤火虫算法因具有结构简单、控制参数少、易于实现的特点而得到广泛的关注和应用, 但其易陷入局部最优导致过早收敛, 从而影响寻优精度。针对这一问题, 本文在位置更新规则中加入随机扰动因子, 并剔除了冗余的随机项, 以提高算法搜索能力; 引入位置置换变异和差分进化算法中的最优变异策略, 在保持种群多样性的同时, 增强算法跳出局部最优的能力。采用马尔可夫过程证明了算法以概率1收敛到全局最优。利用基准函数和装箱问题对算法进行仿真测试, 结果表明, 改进后的算法能够有效跳出局部最优, 对给出的所有问题均能找到理论最优解, 寻优精度和成功率有明显提升。

关键词: 萤火虫算法, 随机扰动, 变异策略, 马尔可夫过程, 函数优化, 装箱问题

Abstract:

The firefly algorithm has been widely concerned and applied because of its characteristics of simple structure, few control parameters and easy implementation, but it is easy to fall into local optimum, which leads to premature convergence and affects the optimization accuracy. To solve this problem, this paper adds a random factor into the individual location update rule to improve search capabilities, and the redundant random items are eliminated. To maintain the diversity of the population and enhance the capabilities of the algorithm to jump out of the local optimum, a position substitution mutation strategy and an optimal mutation strategy which come from the differential evolution algorithm are introduced. The Markov process is used to theoretically analyze the improved algorithm, and it is proved that the algorithm converges to the global optimum with probability of 1. The improved algorithm is simulated and tested using classic benchmark functions and the bin packing problem. Simulation results show that the improved algorithm can effectively jump out of the local optimum and find the theoretical optimal solution for all the given problems with better optimization accuracy and success rate.

Key words: firefly algorithm, stochastic disturbance, mutation strategy, Markov process, function optimization, bin packing problem

中图分类号: