1 |
汪跃, 唐志军, 车德朝, 等. 战场态势一张图技术综述[J]. 指挥信息系统与技术, 2020, 11 (1): 12- 17.
|
|
WANG Y , TANG Z J , CHE D C , et al. Overview of unified battlefield situation map technology[J]. Command Information System and Technology, 2020, 11 (1): 12- 17.
|
2 |
李婷婷, 刁联旺. 智能化态势认知技术与发展建议[J]. 指挥信息系统与技术, 2020, 11 (2): 55- 58.
|
|
LI T T , DIAO L W . Technology and development recommendations for intelligent situation awareness[J]. Command Information System and Technology, 2020, 11 (2): 55- 58.
|
3 |
张臻, 王召辉, 张昕. 基于态势演变的指挥决策预案图生成方法[J]. 指挥信息系统与技术, 2020, 11 (5): 89- 93.
|
|
ZHANG Z , WANG Z H , ZHANG X . Command preplan graph method based on situation evolvement[J]. Command Information System and Technology, 2020, 11 (5): 89- 93.
|
4 |
WANG H Z, SU H, ZHENG K, et al. An effectiveness study on trajectory similarity measures[C]//Proc. of the 24th Austra-lasian Database Conference, 2013: 13-22.
|
5 |
AGARWAL P K , AVRAHAM R B , KAPLAN H , et al. Computing the discrete fréchet distance in subquadratic time[J]. SIAM Journal of Computing, 2014, 43 (2): 429- 449.
doi: 10.1137/130920526
|
6 |
TORRES C F, RASUA R T. The fréchet/manhattan distance and the trajectory anonymisation problem[C]//Proc. of the IFIP Annual Conference on Data and Applications Security and Privacy, 2016: 19-34.
|
7 |
XIE D , LI F F , PHILIPS J M . Distributed trajectory similarity search[J]. Proceedings of the VLDB Endowment, 2017, 10 (11): 1478- 1489.
doi: 10.14778/3137628.3137655
|
8 |
LI X C, ZHAO K Q, CONG G, et al. Deep representation learning for trajectory similarity computation[C]//Proc. of the IEEE 34th International Conference on Data Engineering, 2018: 617-628.
|
9 |
RIYADH M, MUSTAPHA N, RIYADH D. Review of trajectories similarity measures in mining algorithms[C]//Proc. of the Al-Mansour International Conference on New Trends in Computing, Communication, and Information Technology, 2018: 36-40.
|
10 |
YAO D, CONG G, ZHANG C, et al. Computing trajectory similarity in linear time: a generic seed-guided neural metric learning approach[C]//Proc. of the IEEE 35th International Conference on Data Engineering, 2019: 1358-1369.
|
11 |
MAGDY N, SAKR M A, ABDELKADER T M, et al. Review on trajectory similarity measures[C]//Proc. of the IEEE 7th International Conference on Intelligent Computing and Information Systems, 2015: 613-619.
|
12 |
CLEASBY I R , WAKEFILED E D , MORRISSEY B J , et al. Using time-series similarity measures to compare animal movement trajectories in ecology[J]. Behavioral Ecology and Sociobiology, 2019, 73 (11): 151.
doi: 10.1007/s00265-019-2761-1
|
13 |
KHAN R , ALI I , ALTOWAIJRI S , et al. LCSS-based algorithm for computing multivariate data set similarity: a case study of real-time WSN data[J]. Sensors, 2019, 19 (1): 166- 180.
doi: 10.3390/s19010166
|
14 |
ZAIM D, BENOMAR A, BELLAFKIH M. Analyzing the trajectories of customers by using LCSS approach[C]//Proc. of the 4th International Conference on Intelligent Computing in Data Sciences, 2020.
|
15 |
HOUSSOU N, GUILLAUME J, PRIGENT A. Review and comparison of similarity measures and community detection algorithms for clustering of network constrained trajectories[EB/OL]. [2021-02-15]. https://hal.archives-ouvertes.fr/hal-02363974.
|
16 |
XIN Y, REN Y L, XU Y N, et al. Research on multi-matching model of trajectory spatiotemporal similarity based on grid-partitioned[C]//Proc. of the 20th COTA international conference of transportation professionals, 2020: 328-339.
|
17 |
GONG X R , HUANG Z , WANG Y L , et al. High-perfor-mance spatiotemporal trajectory matching across heterogeneous data sources[J]. Future Generation Computer Systems, 2020, 105, 148- 161.
doi: 10.1016/j.future.2019.11.027
|
18 |
CHEN B, LIU Y X, SHI W. Research on trajectory similarity matching model based on spatiotemporal trajectory big data[C]//Proc. of the IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference, 2020: 2208-2215.
|
19 |
HU Y G , LU B B . A hidden Markov model-based map matching algorithm for low sampling rate trajectory data[J]. IEEE Access, 2019, 7, 178235- 178245.
doi: 10.1109/ACCESS.2019.2958982
|
20 |
TRAN T N, PHAM D T, ALAM S. A map-matching algorithm for ground movement trajectory representation using A-SMGCS data[C]//Proc. of the International Conference on Artificial Intelligence and Data Analytics for Air Transportation, 2020.
|
21 |
BIAN W T , CUI G , WANG X . A trajectory collaboration based map matching approach for low-sampling-rate GPS tra-jectories[J]. Sensors, 2020, 20 (7): 2057- 2078.
doi: 10.3390/s20072057
|
22 |
XIE Y , ZHOU K , MIAO F , et al. High-accuracy off-line map-matching of trajectory network division based on weight adaptation HMM[J]. IEEE Access, 2020, 8, 7256- 7266.
doi: 10.1109/ACCESS.2020.2964099
|
23 |
王君, 舒培贵, 周林. 高斯-克吕格投影在防空指控系统中的应用[J]. 空军工程大学学报(自然科学版), 2008, 9 (3): 24- 27.
doi: 10.3969/j.issn.1009-3516.2008.03.006
|
|
WANG J , SHU P G , ZHOU L . The application of Gauss-Kruger projection in air defense command and control system[J]. Journal of Air Force Engineering University (Natural Science Education), 2008, 9 (3): 24- 27.
doi: 10.3969/j.issn.1009-3516.2008.03.006
|