系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (4): 1256-1262.doi: 10.12305/j.issn.1001-506X.2022.04.23
李园1, 史宪铭1,*, 李亚娟2, 赵美1
收稿日期:
2021-03-08
出版日期:
2022-04-01
发布日期:
2022-04-01
通讯作者:
史宪铭
作者简介:
李园(1992—), 女, 硕士, 主要研究方向为系统工程、装备保障、弹药保障|史宪铭(1975—), 男, 副教授, 博士, 主要研究方向为系统工程、弹药保障、装备管理|李亚娟(1966—), 女, 副教授, 硕士, 主要研究方向为装备运用|赵美(1966—), 女, 副教授, 硕士, 主要研究方向为管理科学与工程
基金资助:
Yuan LI1, Xianming SHI1,*, Yajuan LI2, Mei ZHAO1
Received:
2021-03-08
Online:
2022-04-01
Published:
2022-04-01
Contact:
Xianming SHI
摘要:
传统作战目标属性判定主要采用指挥员现场判断的定性方法, 具有一定的主观性, 并且由于缺乏较为成熟固定的算法而难以纳入指挥平台中。针对此问题, 结合作战目标属性判定关键影响因素分析, 提出一种基于自适应提升(adaptive boosting, Adaboost)的作战目标属性判定方法。首先, 针对目标有效面积、目标配置区域面积等关键因素, 采用单层决策树算法构建弱分类器。然后, 利用Adaboost对弱分类器进行加权组合, 形成作战目标属性判定的强分类模型。最后, 进行了示例分析, 并与决策树、支持向量机和人工神经网络3种属性判定方法进行对比仿真实验, 证明了所提方法的正确性和优越性。
中图分类号:
李园, 史宪铭, 李亚娟, 赵美. 基于Adaboost的作战目标属性判定方法[J]. 系统工程与电子技术, 2022, 44(4): 1256-1262.
Yuan LI, Xianming SHI, Yajuan LI, Mei ZHAO. Decision method of operational target attribute based on Adaboost[J]. Systems Engineering and Electronics, 2022, 44(4): 1256-1262.
表2
样本数据集"
编号 | 类别 | βk/m2 | ||
β1 | β2 | β3 | ||
1 | 1 | 2 | 0.84 | 11.00 |
2 | 1 | 2 | 0.34 | 15.00 |
3 | 1 | 2 | 0.80 | 26.69 |
4 | 1 | 6 | 1.80 | 35.00 |
5 | 1 | 6 | 0.60 | 55.80 |
6 | 1 | 6 | 1.80 | 93.76 |
7 | 1 | 20 | 6.80 | 119.00 |
8 | 1 | 20 | 4.00 | 209.00 |
9 | 1 | 20 | 6.40 | 378.37 |
10 | 1 | 45 | 13.50 | 320.00 |
11 | 1 | 45 | 6.75 | 514.96 |
12 | 1 | 135 | 21.60 | 1 015.00 |
13 | 1 | 135 | 39.15 | 1 621.81 |
14 | 1 | 405.0 | 109.35 | 3 745.000 |
15 | 1 | 405.0 | 137.70 | 9 949.090 |
16 | 1 | 1 500.0 | 180.00 | 16 800.000 |
17 | 1 | 1 500.0 | 420.00 | 26 690.000 |
18 | 1 | 27.0 | 5.40 | 256.000 |
19 | 1 | 90.0 | 27.00 | 880.000 |
20 | -1 | 0.2 | 0.20 | 0.200 |
21 | -1 | 15.0 | 9.00 | 15.000 |
22 | -1 | 45.0 | 38.25 | 145.000 |
23 | -1 | 135.0 | 108.00 | 535.000 |
24 | -1 | 405.0 | 291.60 | 1 705.000 |
25 | -1 | 1 500.0 | 945.00 | 6 450.000 |
26 | -1 | 9.0 | 5.67 | 9.000 |
27 | -1 | 27.0 | 22.68 | 87.000 |
28 | -1 | 90.0 | 72.90 | 360.000 |
29 | -1 | 100.0 | 90.00 | 100.000 |
30 | -1 | 300.0 | 210.00 | 400.000 |
31 | -1 | 300.0 | 192.00 | 981.250 |
32 | -1 | 300.0 | 255.00 | 625.000 |
33 | -1 | 500.0 | 400.00 | 700.000 |
34 | -1 | 500.0 | 325.00 | 1 746.625 |
35 | -1 | 500.0 | 395.00 | 1 000.000 |
1 | 邵诗佳. 基于智能算法的武器目标分配问题研究[D]. 哈尔滨: 哈尔滨工程大学, 2019. |
SHAO S J. Research on weapon target assignment based on intelligent algorithm[D]. Harbin: Harbin Engineering University, 2019. | |
2 | JIANG G S, SHI X M, ZHAO M, et al. Research on weapon target allocation of synthetic detachment considering emergency target[C]//Proc. of the International Conference on Scientific and Technological Innovation and Industrial Economy, 2020. |
3 |
薛辉, 王源, 张天鹏, 等. 随机组合约束下的联合火力打击弹药需求预测模型[J]. 兵工学报, 2019, 40 (8): 1716- 1724.
doi: 10.3969/j.issn.1000-1093.2019.08.022 |
XUE H , WANG Y , ZHANG T P , et al. Demand forecasting model for joint fire strike ammunition under stochastic combination constraints[J]. Acta Armamentarii, 2019, 40 (8): 1716- 1724.
doi: 10.3969/j.issn.1000-1093.2019.08.022 |
|
4 | LI K, SHI X M, LI Y, et al. Combined forecasting method of ammunition consumption based on wavelet network[C]//Proc. of the 3rd International Conference on Applied Mathematics, Modeling and Simulation, 2020. |
5 |
赵汝东, 史宪铭, 苏小波, 等. 基于Bayesian体系融合的新型弹药消耗预计方法[J]. 兵器装备工程学报, 2020, 41 (2): 75- 80.
doi: 10.11809/bqzbgcxb2020.02.017 |
ZHAO R D , SHI X M , SU X B , et al. New ammunition consumption prediction method based on Bayesian system fusion[J]. Journal of Ordnance Equipment Engineering, 2020, 41 (2): 75- 80.
doi: 10.11809/bqzbgcxb2020.02.017 |
|
6 | 梁勇, 赵贺伟, 王志强, 等. 基于遗传算法的空空导弹消耗规律神经网络预测方法[J]. 海军航空工程学院学报, 2019, 34 (1): 151- 162. |
LIANG Y , ZHAO H W , WANG Z Q , et al. Neural network prediction method for the law of air to air missile consumption based on genetic algorithm[J]. Journal of Naval Aeronautical and Astronautical University, 2019, 34 (1): 151- 162. | |
7 |
DELEN D , TOPUZ K , ERYARSOY E . Development of a Bayesian belief network-based DSS for predicting and understanding freshmen student attrition[J]. European Journal of Operational Research, 2020, 281 (3): 575- 587.
doi: 10.1016/j.ejor.2019.03.037 |
8 | RAJ N , PHILIPOSE A B , DOMINIC D , et al. Exploration of twitter sentiments and classification by using deep CNN and naive Bayes[J]. International Journal of Recent Technology and Engineering, 2020, 9 (2): 1100- 1105. |
9 |
ZHANG Y , JATOWT A . Estimating a one-class naive Bayes text classifier[J]. Intelligent Data Analysis, 2020, 24 (3): 567- 579.
doi: 10.3233/IDA-194669 |
10 |
RAMESH N , DEVI G L , RAO K S . A frame work for classification of multi class medical data based on deep learning and naive Bayes classification model[J]. International Journal of Information Engineering and Electronic Business, 2020, 12 (1): 37- 43.
doi: 10.5815/ijieeb.2020.01.05 |
11 | 张俊玉, 胡家豪, 黄嵩. CART决策树方法在煤电厂节能降耗中的应用[J]. 控制与决策, 2021, 36 (5): 1232- 1238. |
ZHANG J Y , HU J H , HUANG S . Application of CART decision tree model in reducing coal consumption in coal power plant[J]. Control and Decision, 2021, 36 (5): 1232- 1238. | |
12 |
BEHROUZ M , MOGHADAS N F , HAMZEH Z . Pavement maintenance and rehabilitation optimization based on cloud decision tree[J]. International Journal of Pavement Research and Technology, 2021, 14 (6): 740- 750.
doi: 10.1007/s42947-020-0306-7 |
13 | KIM D Y . Adopting and implementation of decision tree classification method for image interpolation[J]. Journal of the Korea Society of Digital Industry and Information Management, 2020, 16 (1): 55- 65. |
14 | AGGARWA H , ARORA H D , KUMAR V . An entropy based decision making problem using fuzzy decision tree classification of data mining[J]. Journal of Critical Reviews, 2020, 7 (18): 1801- 1811. |
15 |
LORENZ C L , SPAETH A B , SOUZA C B D , et al. Artificial neural networks for parametric daylight design[J]. Architectural Science Review, 2020, 63 (2): 210- 221.
doi: 10.1080/00038628.2019.1700901 |
16 |
RANA A , KIM K K . Comparison of artificial neural networks for low-power ECG-classification system[J]. Journal of Sensor Science and Technology, 2020, 29 (1): 19- 26.
doi: 10.5369/JSST.2019.29.1.19 |
17 |
SAKAA B , CHAFFAI H , HANI A . ANNs approach to identify water demand drivers for Saf-Saf river basin[J]. Journal of Applied Water Engineering and Research, 2020, 8 (1): 44- 54.
doi: 10.1080/23249676.2020.1719220 |
18 | GULTEKIN A , SIRAC O M . Displacement prediction of precast concrete under vibration using artificial neural networks[J]. Structural Engineering and Mechanics, 2020, 74 (4): 559- 565. |
19 |
WANG H , ZHENG B , YOON S W , et al. A support vector machine-based ensemble algorithm for breast cancer diagnosis[J]. European Journal of Operational Research, 2018, 267 (2): 687- 699.
doi: 10.1016/j.ejor.2017.12.001 |
20 |
LIU M , CYGLER J E , VANDERVOORT E . Patient-specific PTV margins for liver stereotactic body radiation therapy determined using support vector classification with an early warning system for margin adaptation[J]. Medical Physics, 2020, 47 (10): 5172- 5182.
doi: 10.1002/mp.14419 |
21 |
ASHFAQ A , JIN Y , ZHU C G , et al. Photovoltaic cell defect classification using convolutional neural network and support vector machine[J]. IET Renewable Power Generation, 2020, 14 (14): 2693- 2702.
doi: 10.1049/iet-rpg.2019.1342 |
22 |
WANG H R , LU S J , ZHOU Z J . Ramp loss for twin multi-class support vector classification[J]. International Journal of Systems Science, 2020, 51 (8): 1448- 1463.
doi: 10.1080/00207721.2020.1765047 |
23 |
FREUND Y , SCHAPIRE R E . A decision theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997, 55 (1): 119- 139.
doi: 10.1006/jcss.1997.1504 |
24 | LIU M . Fingerprint classification based on Adaboost learning from singularity features[J]. Pattern Recognition, 2010, 43 (1): 1062- 1070. |
25 | INHO C , DAIJIN K . A variety of local structure patterns and their hybridization for accurate eye detection[J]. Pattern Re-cognition, 2017, 61 (C): 417- 432. |
26 | HOWE N R, RATH T M, MANMATHA R. Boosted decision trees for word recognition in handwritten document retrieval[C]//Proc. of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2005: 377-383. |
27 | SCHAPIRE R E , SINGER Y . A boosting-based system for text categorization[J]. Machine Learning, 2000, 39 (23): 135- 168. |
28 |
PENG X J , SETLUR S , GOVINDARAJU V , et al. Using a boosted tree classifier for text segmentation in hand-annotated documents[J]. Pattern Recognition Letters, 2012, 33 (7): 943- 950.
doi: 10.1016/j.patrec.2011.09.007 |
29 |
CHEN S Q , GUO Z F , ZHAO X L . Predicting mortgage early delinquency with machine learning methods[J]. European Journal of Operational Research, 2021, 290 (1): 358- 372.
doi: 10.1016/j.ejor.2020.07.058 |
30 | SHI X M, LI G N, LI K, et al. Customer classification method of logistics enterprises based on BP-AdaBoost[C]//Proc. of the 3rd International Conference on Applied Mathematics, Modeling and Simulation, 2020. |
31 |
LIU C , CAO Y . Task re-pricing model based on density-based spatial clustering of applications[J]. Applied Soft Computing, 2020, 96, 106608.
doi: 10.1016/j.asoc.2020.106608 |
32 | VALENTINI G , DIETTERICH T G . Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods[J]. Journal of Machine Learning Research, 2004, 5, 725- 775. |
33 |
ZHANG X D , LI A , PAN R . Stock trend prediction based on a new status box method and AdaBoost probabilistic support vector machine[J]. Applied Soft Computing, 2016, 49, 385- 398.
doi: 10.1016/j.asoc.2016.08.026 |
34 | 梅比, 汪旭光, 杨仁树. 基于Adaboost-SVM组合算法的爆破振动强度预测研究[J]. 振动与冲击, 2019, 38 (18): 231- 235. |
MEI B , WANG X G , YANG R S . Prediction of blasting vibration intensity based on Adaboost-SVM combination algorithm[J]. Journal of Vibration and Shock, 2019, 38 (18): 231- 235. | |
35 | MARSLAND S . Machine learning[M]. Florida: Chapman and Hall/CRC, 2009. |
36 | FREUND Y, SCHAPIRE R E. Experiments with a new boosting algorithm[C]//Proc. of the 13th International Conference on Machine Learning, 1996. |
37 | ZHANG H B , QIU D D , WU R Z , et al. Novel framework for image attribute annotation with gene selection XGBoost algorithm and relative attribute model[J]. Applied Soft Computing, 2019, 80 (1): 57- 79. |
38 | SAMUEL W P , MAHENDRA N , DHANASEKHARA N , et al. Investigation of severity level of diabetic retinopathy using adaboost classifier algorithm[J]. Materials Today: Procee-dings, 2020, 33 (7): 3037- 3042. |
39 | DOU L J , LI X L , ZHANG L C , et al. Identification of lysine glutarylation using the adaboost classifier[J]. Journal of Proteome Research, 2020, 20 (1): 191- 201. |
40 |
STEHMAN S V . Selecting and interpreting measures of the matic classification accuracy[J]. Remote Sensing of Environment, 1997, 62 (1): 77- 89.
doi: 10.1016/S0034-4257(97)00083-7 |
[1] | 刘延钊, 黄志球, 沈国华, 王金永, 徐恒. 基于决策树和BN的自动驾驶车辆行为决策方法[J]. 系统工程与电子技术, 2022, 44(10): 3143-3154. |
[2] | 陈唯实, 黄毅峰, 陈小龙, 卢贤锋, 张洁. 基于模型转换频率估计的低空目标分类[J]. 系统工程与电子技术, 2021, 43(4): 927-936. |
[3] | 张正言, 张剑云. 双基地MIMO雷达多目标高精度跟踪算法[J]. 系统工程与电子技术, 2018, 40(6): 1241-1248. |
[4] | 陈志仁, 顾红, 苏卫民, 王钊. 改进的支持向量机低分辨雷达目标分类算法[J]. 系统工程与电子技术, 2017, 39(11): 2456-2462. |
[5] | 陈志仁, 顾红, 苏卫民, 王钊. 基于特征概率分布的低分辨雷达地面目标分类[J]. 系统工程与电子技术, 2016, 38(2): 274-280. |
[6] | 单甘霖, 张子宁. 面向目标跟踪的单平台主被动传感器长期调度[J]. 系统工程与电子技术, 2014, 36(3): 458-463. |
[7] | 韩勋,杜兰,刘宏伟,邵长宇. 基于时频分布的空间锥体目标微动形式分类[J]. Journal of Systems Engineering and Electronics, 2013, 35(4): 684-691. |
[8] | 冯国瑜, 肖怀铁, 付强, 黄孟俊. 基于自适应SVDD的雷达目标分类方法[J]. Journal of Systems Engineering and Electronics, 2011, 33(2): 253-258. |
[9] | 崔建, 李强, 刘勇, 宗大伟. 基于决策树的快速SVM分类方法[J]. Journal of Systems Engineering and Electronics, 2011, 33(11): 2558-2563. |
[10] | 刘思远, 姜万录, 牛慧峰. 基于主元分析及粗糙集的多变量决策树构造方法[J]. Journal of Systems Engineering and Electronics, 2009, 31(5): 1133-1137. |
[11] | 赵静娴, 倪春鹏, 詹原瑞, 杜子平. 一种大规模数据库的组合优化决策树算法[J]. Journal of Systems Engineering and Electronics, 2009, 31(3): 583-587. |
[12] | 赵静娴, 倪春鹏, 詹原瑞, 杜子平. 一种高效的连续属性离散化算法[J]. Journal of Systems Engineering and Electronics, 2009, 31(1): 195-199. |
[13] | 赵静娴, 倪春鹏, 詹原瑞, 杜子平. 一种高效的连续属性离散化算法[J]. Journal of Systems Engineering and Electronics, 2009, 31(01): 195-199. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||