系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (4): 1256-1262.doi: 10.12305/j.issn.1001-506X.2022.04.23

• 系统工程 • 上一篇    下一篇

基于Adaboost的作战目标属性判定方法

李园1, 史宪铭1,*, 李亚娟2, 赵美1   

  1. 1. 陆军工程大学石家庄校区装备指挥与管理系, 河北 石家庄 050003
    2. 陆军步兵学院石家庄校区机械化步兵系, 河北 石家庄 050227
  • 收稿日期:2021-03-08 出版日期:2022-04-01 发布日期:2022-04-01
  • 通讯作者: 史宪铭
  • 作者简介:李园(1992—), 女, 硕士, 主要研究方向为系统工程、装备保障、弹药保障|史宪铭(1975—), 男, 副教授, 博士, 主要研究方向为系统工程、弹药保障、装备管理|李亚娟(1966—), 女, 副教授, 硕士, 主要研究方向为装备运用|赵美(1966—), 女, 副教授, 硕士, 主要研究方向为管理科学与工程
  • 基金资助:
    军队重点科研项目(LJ20202C050369);全军军事类研究生(JY2020B086)

Decision method of operational target attribute based on Adaboost

Yuan LI1, Xianming SHI1,*, Yajuan LI2, Mei ZHAO1   

  1. 1. Department of Equipment Command and Management, Shijiazhuang Campus, Army Engineering University, Shijiazhuang 050003, China
    2. Department of Mechanized Infantry, Shijiazhuang Campus, Army Infantry College, Shijiazhuang 050227, China
  • Received:2021-03-08 Online:2022-04-01 Published:2022-04-01
  • Contact: Xianming SHI

摘要:

传统作战目标属性判定主要采用指挥员现场判断的定性方法, 具有一定的主观性, 并且由于缺乏较为成熟固定的算法而难以纳入指挥平台中。针对此问题, 结合作战目标属性判定关键影响因素分析, 提出一种基于自适应提升(adaptive boosting, Adaboost)的作战目标属性判定方法。首先, 针对目标有效面积、目标配置区域面积等关键因素, 采用单层决策树算法构建弱分类器。然后, 利用Adaboost对弱分类器进行加权组合, 形成作战目标属性判定的强分类模型。最后, 进行了示例分析, 并与决策树、支持向量机和人工神经网络3种属性判定方法进行对比仿真实验, 证明了所提方法的正确性和优越性。

关键词: 作战目标, 目标分类, 自适应提升, 决策树

Abstract:

The traditional battle target attribute judgment mainly adopts the qualitative method of commander's on-site judgment, which has a certain subjectivity, and it is difficult to be included in the command platform due to the lack of mature and fixed algorithm. To solve this problem, combined with the analysis of key influencing factors of combat target attribute determination, a combat target attribute determination method based on adaptive boosting (AdaBoost) is proposed. Firstly, aiming at the key factors such as target effective area and target configuration area, a single-layer decision tree algorithm is used to construct a weak classifier. Then, the weak classifiers are weighted and combined by AdaBoost to form a strong classification model for determining the attributes of combat targets. Finally, an example is analyzed and compared with three attribute determination methods: decision tree, support vector machine and artificial neural network. Simulation experiments show that the proposed method is correct and superior.

Key words: operational target, target classification, adaptive boosting (Adaboost), decision tree

中图分类号: